lncRNA FENDRR Predicts Adverse Prognosis and Regulates the Development of Esophageal Squamous Cell Carcinoma Through Negatively Modulating miR-495-3p
Main Article Content
Abstract
Background/Aims: Esophageal squamous cell carcinoma (ESCC) is a major subtype of esophageal carcinoma and is highly prevalent in China. Identification of effective biomarkers could benefit ESCC management and therefore improve clinical outcomes. Evaluating the expression and significance of long non-coding RNA Fetal-lethal non-coding developmental regulatory RNA (FENDRR) in ESCC aims to provide a biomarker candidate for ESCC.
Materials and Methods: This study enrolled 117 ESCC patients and collected tissue samples. The expression of FENDRR in collected samples was analyzed by polymerase chain reaction. The Chi-square, Kaplan–Meier, and Cox analyses were performed to reveal its clinical value. In ESCC cells, FENDRR was regulated by cell transfection, and its effect on cell growth and motility was evaluated.
Results: FENDRR was downregulated in ESCC and was associated with large tumor size, poor differentiation, late TNM stage, positive lymph node metastasis, and adverse development-free survival of ESCC patients. FENDRR acted as an adverse indicator for the prognosis of ESCC patients. miR-495-3p was negatively regulated by FENDRR. Overexpressing FENDRR significantly suppressed ESCC cell growth and metastasis, while miR-495-3p reversed these effects.
Conclusion: Downregulated FENDRR in ESCC predicted the malignant development and adverse prognosis of ESCC patients. FENDRR served as a tumor suppressor of ESCC by modulating miR-495-3p.
Cite this article as: Xue Y, Yang R, Gong P, Zhu H. LncRNA FENDRR predicts adverse prognosis and regulates the development of esophageal squamous cell carcinoma through negatively modulating miR-495-3p. Turk J Gastroenterol. Published online May 20, 2025. doi 10.5152/tjg.2025.24350.
Article Details
References
1. Huang FL, Yu SJ. Esophageal cancer: risk factors, genetic association, and treatment. Asian J Surg. 2018;41(3):210-215. [CrossRef]
2. Lai RP. Esophageal squamous cell carcinoma: time to predict the risk? Am J Gastroenterol. 2021;116(8):1757-1758. [CrossRef]
3. Lam AK. Introduction: esophageal squamous cell carcinoma-current status and future advances. Methods Mol Biol. 2020;2129:1-6. [CrossRef]
4. Niu C, Liu Y, Wang J, et al. Risk factors for esophageal squamous cell carcinoma and its histological precursor lesions in China: a multicenter cross-sectional study. BMC Cancer. 2021;21(1):1034. [CrossRef]
5. Uhlenhopp DJ, Then EO, Sunkara T, Gaduputi V. Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin J Gastroenterol. 2020;13(6):1010-1021. [CrossRef]
6. Zhou N, Rajaram R, Hofstetter WL. Management of locally advanced esophageal cancer. Surg Oncol Clin N Am. 2020;29(4):631-646. [CrossRef]
7. Waters JK, Reznik SI. Update on management of squamous cell esophageal cancer. Curr Oncol Rep. 2022;24(3):375-385. [CrossRef]
8. Li Y, Yang B, Ma Y, et al. Phosphoproteomics reveals therapeutic targets of esophageal squamous cell carcinoma. Signal Transduct Target Ther. 2021;6(1):381. [CrossRef]
9. Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65(4):625-639. [CrossRef]
10. Li W, Liu J, Zhao H. Identification of a nomogram based on long non-coding RNA to improve prognosis prediction of esophageal squamous cell carcinoma. Aging (Albany NY). 2020;12(2):1512-1526. [CrossRef]
11. Shi X, Liu X, Pan S, et al. A novel autophagy-related long noncoding RNA signature to predict prognosis and therapeutic response in esophageal squamous cell carcinoma. Int J Gen Med. 2021;14:8325-8339. [CrossRef]
12. Liu J, Du W. LncRNA FENDRR attenuates colon cancer progression by repression of SOX4 protein. Onco Targets Ther. 2019;12:4287-4295. [CrossRef]
13. Ma J, Zhao G, Du J, Li J, Lin G, Zhang J. LncRNA FENDRR inhibits gastric cancer cell proliferation and invasion via the miR-421/SIRT3/Notch-1 axis. Cancer Manag Res. 2021;13:9175-9187. [CrossRef]
14. Pan H, Yu T, Sun L, Chai W, Liu X, Yan M. LncRNA FENDRR-mediated tumor suppression and tumor-immune microenvironment changes in non-small cell lung cancer. Transl Cancer Res. 2020;9(6):3946-3959. [CrossRef]
15. Cheng C, Li H, Zheng J, Xu J, Gao P, Wang J. FENDRR sponges miR-424-5p to inhibit cell proliferation, migration and invasion in colorectal cancer. Technol Cancer Res Treat. 2020;19:1533033820980102. [CrossRef]
16. Gong L, Zhu L, Yang T. Fendrr involves in the pathogenesis of cardiac fibrosis via regulating miR-106b/SMAD3 axis. Biochem Biophys Res Commun. 2020;524(1):169-177. [CrossRef]
17. Qian G, Jin X, Zhang L. LncRNA FENDRR upregulation promotes hepatic carcinoma cells apoptosis by targeting miR-362-5p via NPR3 and p38-MAPK pathway. Cancer Biother Radiopharm. 2020;35(9):629-639. [CrossRef]
18. Zhang G, Wang Q, Zhang X, Ding Z, Liu R. LncRNA FENDRR suppresses the progression of NSCLC via regulating miR-761/TIMP2 axis. Biomed Pharmacother. 2019;118:109309. [CrossRef]
19. Zhu Y, Zhang X, Wang L, et al. FENDRR suppresses cervical cancer proliferation and invasion by targeting miR-15a/b-5p and regulating TUBA1A expression. Cancer Cell Int. 2020;20:152. [CrossRef]
20. Huang GM, Zang HL, Geng YX, Li YH. LncRNA FAM83A-AS1 aggravates the malignant development of esophageal cancer by binding to miR-495-3p. Eur Rev Med Pharmacol Sci. 2020;24(18):9408-9415. [CrossRef]
21. Mehryar MM, Li SY, Liu HW, et al. Prevalence of human papillomavirus in esophageal carcinoma in Tangshan, China. World J Gastroenterol. 2015;21(10):2905-2911. [CrossRef]
22. Luo T, Zhao J, Lu Z, et al. Characterization of long non-coding RNAs and MEF2C-AS1 identified as a novel biomarker in diffuse gastric cancer. Transl Oncol. 2018;11(5):1080-1089. [CrossRef]
23. Yin SL, Xiao F, Liu YF, Chen H, Guo GC. Long non-coding RNA FENDRR restrains the aggressiveness of CRC via regulating miR-18a-5p/ING4 axis. J Cell Biochem. 2020;121(8-9):3973-3985. [CrossRef]
24. Li Y, Zhang W, Liu P, et al. Long non-coding RNA FENDRR inhibits cell proliferation and is associated with good prognosis in breast cancer. Onco Targets Ther. 2018;11:1403-1412. [CrossRef]
25. Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct. 2022;17(1):26. [CrossRef]
26. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669-680. [CrossRef]
27. Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer. 2018;18(5):296-312. [CrossRef]
28. Qin X, Lu M, Zhou Y, Li G, Liu Z. LncRNA FENDRR represses proliferation, migration and invasion through suppression of survivin in cholangiocarcinoma cells. Cell Cycle. 2019;18(8):889-897. [CrossRef]
29. Kun-Peng Z, Xiao-Long M, Chun-Lin Z. LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through downregulating ABCB1 and ABCC1. Oncotarget. 2017;8(42):71881-71893. [CrossRef]
30. Zhang YQ, Chen X, Fu CL, et al. FENDRR reduces tumor invasiveness in prostate cancer PC-3 cells by targeting CSNK1E. Eur Rev Med Pharmacol Sci. 2019;23(17):7327-7337. [CrossRef]
31. He W, Zhong G, Wang P, Jiang C, Jiang N, Huang J. Downregulation of long noncoding RNA FENDRR predicts poor prognosis in renal cell carcinoma. Oncol Lett. 2019;17(1):103-112. [CrossRef]
32. Panni S, Lovering RC, Porras P, Orchard S. Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech. 2020;1863(6):194417. [CrossRef]
33. Zhang JL, Zheng HF, Li K, Zhu YP. miR-495-3p depresses cell proliferation and migration by downregulating HMGB1 in colorectal cancer. World J Surg Oncol. 2022;20(1):101. [CrossRef]
34. Sreedharan L, Mayne GC, Watson DI, et al. MicroRNA profile in neosquamous esophageal mucosa following ablation of Barrett’s esophagus. World J Gastroenterol. 2017;23(30):5508-5518. [CrossRef]
35. Yang H, Chen XW, Song XJ, Du HY, Si FC. Baitouweng decoction suppresses growth of esophageal carcinoma cells through miR-495-3p/BUB1/STAT3 axis. World J Gastrointest Oncol. 2024;16(7):3193-3210. [CrossRef]
36. Song C, Wang Q, Qi Q, et al. MiR-495-3p regulates myoblasts proliferation and differentiation through targeting cadherin 2. Anim Biotechnol. 2023;34(7):2617-2625. [CrossRef]
37. Tang J, Pan H, Wang W, et al. MiR-495-3p and miR-143-3p co-target CDK1 to inhibit the development of cervical cancer. Clin Transl Oncol. 2021;23(11):2323-2334. [CrossRef]