Original Articles

Vol. 36 No. 2 (2025): Turkish Journal of Gastroenterology

Diagnostic Performance of Deep Learning Applications in Hepatocellular Carcinoma Detection Using Computed Tomography Imaging

Main Article Content

Enes Şahin
Ozan Can Tatar
Mehmet Eşref Ulutaş
Sertaç Ata Güler
Turgay Şimşek
Nihat Zafer Utkan
Nuh Zafer Cantürk

Abstract

Background/Aims: Hepatocellular carcinoma (HCC) is a prevalent cancer that significantly contributes to mortality globally, primarily due to its late diagnosis. Early detection is crucial yet challenging. This study leverages the potential of deep learning (DL) technologies, employing the You Only Look Once (YOLO) architecture, to enhance the detection of HCC in computed tomography (CT) images, aiming to improve early diagnosis and thereby patient outcomes.


Materials and methods: We used a dataset of 1290 CT images from 122 patients, segmented according to a standard 70:20:10 split for training, validation, and testing phases. The YOLO-based DL model was trained on these images, with subsequent phases for validation and testing to assess the model’s diagnostic capabilities comprehensively.


Results: The model exhibited exceptional diagnostic accuracy, with a precision of 0.97216, recall of 0.919, and an overall accuracy of 95.35%, significantly surpassing traditional diagnostic approaches. It achieved a specificity of 95.83% and a sensitivity of 94.74%, evidencing its effectiveness in clinical settings and its potential to reduce the rate of missed diagnoses and unnecessary interventions.


Conclusion: The implementation of the YOLO architecture for detecting HCC in CT scans has shown substantial promise, indicating that DL models could soon become a standard tool in oncological diagnostics. As artificial intelligence technology continues to evolve, its integration into healthcare systems is expected to advance the accuracy and efficiency of diagnostics in oncology, enhancing early detection and treatment strategies and potentially improving patient survival rates.

Cite this article as: Şahin E, O, Tatar C, et al. Diagnostic performance of deep learning applications in hepatocellular carcinoma detection using computed tomography imaging. Turk J Gastroenterol. 2025;36(2):124-130.

Article Details

References

1. Brown ZJ, Tsilimigras DI, Ruff SM, et al. Management of hepatocellular carcinoma: a review. JAMA Surg. 2023;158(4):410-420. [CrossRef]

2. Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res. 2021;149:1-61. [CrossRef]

3. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301-1314. [CrossRef]

4. Ganesan P, Kulik LM. Hepatocellular carcinoma: new developments. Clin Liver Dis. 2023;27(1):85-102. [CrossRef]

5. Gilles H, Garbutt T, Landrum J. Hepatocellular carcinoma. Crit Care Nurs Clin North Am. 2022;34(3):289-301. [CrossRef]

6. Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol. 2017;34(2):153-159. [CrossRef]

7. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450-1462. [CrossRef]

8. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400(10360):1345-1362. [CrossRef]

9. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589-604. [CrossRef]

10. Yang C, Zhang H, Zhang L, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023;20(4):203-222. [CrossRef]

11. Yang X, Yang C, Zhang S, et al. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell. 2024;42(2):180-197. [CrossRef]

12. Sidali S, Trépo E, Sutter O, Nault JC. New concepts in the treatment of hepatocellular carcinoma. U Eur Gastroenterol J. 2022;10(7):765-774. [CrossRef]

13. Shriki JE, Seyal AR, Dighe MK, et al. CT of atypical and uncommon presentations of hepatocellular carcinoma. AJR Am J Roentgenol. 2015;205(4):W411-W423. [CrossRef]

14. Chernyak V. Up-to-date role of liver imaging reporting and data system in hepatocellular carcinoma. Surg Oncol Clin N Am. 2024;33(1):59-72. [CrossRef]

15. Nakamura Y, Higaki T, Honda Y, et al. Advanced CT techniques for assessing hepatocellular carcinoma. Radiol Med. 2021;126(7):925-935. [CrossRef]

16. Coskun M. Hepatocellular carcinoma in the cirrhotic liver: evaluation using computed tomography and magnetic resonance imaging. Exp Clin Transplant. 2017;15(suppl 2):36-44. [CrossRef]

17. Zhou LQ, Wang JY, Yu SY, et al. Artificial intelligence in medical imaging of the liver. World J Gastroenterol. 2019;25(6):672-682. [CrossRef]

18. Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol. 2020;1213:3-21. [CrossRef]

19. Lee IC, Tsai YP, Lin YC, et al. A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images. Cancer Imaging. 2024;24(1):43. [CrossRef]

20. Wei Q, Tan N, Xiong S, Luo W, Xia H, Luo B. Deep learning methods in medical image-based hepatocellular carcinoma diagnosis: a systematic review and meta-analysis. Cancers. 2023;15(23):5701. [CrossRef]

21. Tatar OC, Akay MA, Tatar E, Metin S. Unveiling new patterns: a surgical deep learning model for intestinal obstruction management. Int J Med Robot. 2024;20(1):e2620. [CrossRef]

22. Ju RY, Cai W. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Sci Rep. 2023;13(1):20077. [CrossRef]

23. Mei J, Yan H, Tang Z, et al. Deep learning algorithm applied to plain CT images to identify superior mesenteric artery abnormalities. Eur J Radiol. 2024;173:111388. [CrossRef]

24. Kim J, Min JH, Kim SK, Shin SY, Lee MW. Detection of hepatocellular carcinoma in contrast-enhanced magnetic resonance imaging using deep learning classifier: a multi-center retrospective study. Sci Rep. 2020;10(1):9458. [CrossRef]

25. Wang M, Fu F, Zheng B, et al. Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data. Br J Cancer. 2021;125(8):1111-1121. [CrossRef]

26. Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data. J Hematol Oncol. 2021;14(1):154. [CrossRef]

27. Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol. 2019;29(7):3338-3347. [CrossRef]

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 > >> 

You may also start an advanced similarity search for this article.