Original Articles

Vol. 36 No. 1 (2025): Turkish Journal of Gastroenterology

Inhibitory Effect of Aconitine on Colorectal Cancer Malignancy via Inducing Apoptosis and Suppression of Cell Motion

Main Article Content

Xuehui Li
Jianglin Hu
Duan Tong
Taotao Yang
Ming Deng

Abstract

Background/Aims: The incidence of colorectal cancer (CRC) has been increasing in recent years worldwide. Aconitine is a diester diterpenoid alkaloid that exhibits an antitumor role in several cancers. Nevertheless, it remains unclear whether aconitine also has antitumor activity in CRC. This study aims to investigate the effects of aconitine on the malignant behaviors of CRC cells.


Materials and Methods: 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay was utilized for cell viability assessment. Flow cytometry, western blotting, wound healing, and Transwell assays were implemented for examining the aconitine effect on CRC cell apoptosis, migration, and invasiveness. Animal experiments were performed to further elucidate aconitine’s effect on CRC tumorigenesis.


Results: Aconitine time- and dose-dependently restrained CRC cell viability but was not cytotoxic to normal colorectal mucosa cells. Aconitine facilitated CRC cell apoptosis and hindered cell migration and invasiveness. Aconitine blocked tumor growth in xenograft mouse models.


Conclusion: Aconitine exerts an anti-CRC effect by promoting cell apoptosis and blocking cell migration and invasiveness.

Cite this article as: Li X, Hu J, Tong D, Yang T, Deng M. Inhibitory effect of aconitine on colorectal cancer malignancy via inducing apoptosis and suppression of cell motion. Turk J Gastroenterol. 2025;36(1):53-60.

Article Details

References

1. Baidoun F, Elshiwy K, Elkeraie Y, et al. Colorectal cancer epidemiology: recent trends and impact on outcomes. Curr Drug Targets. 2021;22(9):998-1009. [CrossRef]

2. Yang W, Chen J, Liang H, Wu W. Interleukin-17A mRNA expression is associated with the prognosis of patients with colorectal cancer: a pooled meta-analysis. Turk J Gastroenterol. 2022;33(12):995-1003. [CrossRef]

3. Graham H, Kauffman R, Khaliq W. Colorectal cancer screening prevalence, perceived barriers, and preference for screening colonoscopy among hospitalized women. Turk J Gastroenterol. 2022;33(11):901-908. [CrossRef]

4. Erdem L, Akbal E, Koçak E, et al. A new risk-scoring system for colorectal cancer and polyp screening by Turkish colorectal cancer and polyp study group. Turk J Gastroenterol. 2022;33(4):286-293. [CrossRef]

5. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. [CrossRef]

6. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467-1480. [CrossRef]

7. Ye M, Zhao L, Zhang L, et al. LncRNA NALT1 promotes colorectal cancer progression via targeting PEG10 by sponging microRNA574-5p. Cell Death Dis. 2022;13(11):960. [CrossRef]

8. Lichtenstern CR, Ngu RK, Shalapour S, Karin M. Immunotherapy, inflammation and colorectal cancer. Cells. 2020;9(3):618. [CrossRef]

9. Jin K, Ren C, Liu Y, Lan H, Wang Z. An update on colorectal cancer microenvironment, epigenetic and immunotherapy. Int Immunopharmacol. 2020;89(A):107041. [CrossRef]

10. Ghasemian A, Omear HA, Mansoori Y, et al. Long non-coding RNAs and JAK/STAT signaling pathway regulation in colorectal cancer development. Front Genet. 2023;14:1297093. [CrossRef]

11. Guo W, Cai Y, Liu X, et al. Single-exosome profiling identifies ITGB3+ and ITGAM+ exosome subpopulations as promising early diagnostic biomarkers and therapeutic targets for colorectal cancer. Research (Wash D C). 2023;6:0041. [CrossRef]

12. Hao D, Liu J, Guo Z, et al. Supercritical fluid extract of Angelica sinensis promotes the anti-colorectal cancer effect of oxaliplatin. Front Pharmacol. 2022;13:1007623. [CrossRef]

13. Lai JQ, Zhao LL, Hong C, et al. Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis. Acta Pharmacol Sin. 2024;45(8):1715-1726. [CrossRef]

14. Liu A, Liu C. In vitro and in vivo antineoplastic activities of solamargine in colorectal cancer through the suppression of PI3K/AKT pathway. Histol Histopathol. 2024;39(10):1317-1328. [CrossRef]

15. Gao X, Hu J, Zhang X, Zuo Y, Wang Y, Zhu S. Research progress of aconitine toxicity and forensic analysis of aconitine poisoning. Forensic Sci Res. 2020;5(1):25-31. [CrossRef]

16. Li S, Yu L, Shi Q, et al. An insight into current advances on pharmacology, pharmacokinetics, toxicity and detoxification of aconitine. Biomed Pharmacother. 2022;151:113115. [CrossRef]

17. Deng J, Han J, Chen J, et al. Comparison of analgesic activities of aconitine in different mice pain models. PLoS One. 2021;16(4):e0249276. [CrossRef]

18. Zhang L, Siyiti M, Zhang J, Yao M, Zhao F. Anti-inflammatory and anti-rheumatic activities in vitro of alkaloids separated from Aconitum soongoricum Stapf. Exp Ther Med. 2021;21(5):493. [CrossRef]

19. Li X, Gu L, Yang L, Zhang D, Shen J. Aconitine: a potential novel treatment for systemic lupus erythematosus. J Pharmacol Sci. 2017;133(3):115-121. [CrossRef]

20. Ji BL, Xia LP, Zhou FX, Mao GZ, Xu LX. Aconitine induces cell apoptosis in human pancreatic cancer via NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 2016;20(23):4955-4964.

21. Qi X, Wang L, Wang H, Yang L, Li X, Wang L. Aconitine inhibits the proliferation of hepatocellular carcinoma by inducing apoptosis. Int J Clin Exp Pathol. 2018;11(11):5278-5289.

22. Wang X, Lin Y, Zheng Y. Antitumor effects of aconitine in A2780 cells via estrogen receptor β-mediated apoptosis, DNA damage and migration. Mol Med Rep. 2020;22(3):2318-2328. [CrossRef]

23. Zhao S, Sun H, Jiang W, et al. miR-4775 promotes colorectal cancer invasion and metastasis via the Smad7/TGFβ-mediated epithelial to mesenchymal transition. Mol Cancer. 2017;16(1):12. [CrossRef]

24. Sun Y, Liu Y, Cai Y, Han P, Hu S, Cao L. Atractylenolide I inhibited the development of malignant colorectal cancer cells and enhanced oxaliplatin sensitivity through the PDK1-FoxO1 axis. J Gastrointest Oncol. 2022;13(5):2382-2392. [CrossRef]

25. Liu M, Xue G, Liu R, Wang Y, Sheng X, Sun W. Saponin from Platycodi radix inactivates PI3K/AKT signaling pathway to hinder colorectal cancer cell proliferation, invasion, and migration through miR-181c/d-5p/RBM47. Mol Carcinog. 2023;62(2):174-184. [CrossRef]

26. Lu T, Zheng C, Fan Z. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression. Pharm Biol. 2022;60(1):1011-1021. [CrossRef]

27. Zhao P, Tian Y, Geng Y, et al. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem. 2024;12:1339364. [CrossRef]

28. Song N, Ma J, Hu W, et al. Lappaconitine hydrochloride inhibits proliferation and induces apoptosis in human colon cancer HCT-116 cells via mitochondrial and MAPK pathway. Acta Histochem. 2021;123(5):151736. [CrossRef]

29. Ramesh P, Medema JP. BCL-2 family deregulation in colorectal cancer: potential for BH3 mimetics in therapy. Apoptosis. 2020;25(5-6):305-320. [CrossRef]

30. Zhou L, Wang S, Cao L, et al. Lead acetate induces apoptosis in Leydig cells by activating PPARγ/caspase-3/PARP pathway. Int J Environ Health Res. 2021;31(1):34-44. [CrossRef]

31. Zhang X, Li T, Han YN, et al. miR-125b promotes colorectal cancer migration and invasion by dual-targeting CFTR and CGN. Cancers (Basel). 2021;13(22). [CrossRef]

32. Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR. Ki-67 protein as a tumour proliferation marker. Clin Chim Acta. 2019;491:39-45. [CrossRef]

33. Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol. 2023;14:1172939. [CrossRef]

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.