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ABSTRACT
Background/Aims: Colorectal cancer (CRC) is a significant global health concern, and understanding the molecular mechanisms under-
lying CRC progression and prognosis is crucial. Neutrophil extracellular traps (NETs) have been implicated in various cancers, but their 
role in CRC and its clinical implications remain to be elucidated.
Materials and Methods: Transcriptomic data from TCGA of CRC patients were analyzed to assess NETs enrichment and “NETs forma-
tion” pathway scores in NETs_high and NETs_low groups. Univariate Cox regression was used to identify prognosis-associated genes 
with the Log-Rank test for selection. Patients in the TCGA database were randomly split into training and testing sets to build a prog-
nostic model with LASSO Cox regression. Model diagnostic performance was evaluated using Kaplan–Meier curves and receiver operat-
ing characteristic analysis. Single-sample gene set enrichment analysis (ssGSEA) was used to determine the abundance of 23 immune 
cells. ESTIMATE was used to calculate ImmuneScore and ESTIMATEScore, characterizing immune features of CRC samples.
Results: The NETs_high group in CRC showed significantly better survival than the NETs_low group. A robust prognostic model based 
on PRKRIP1, SERTAD2, ELFN1, and LINC00672 accurately predicted patient outcomes. NETs_high samples exhibited a more enriched 
immune environment with higher immune cell infiltration levels, as well as ImmuneScore and ESTIMATEScore. PRKRIP1, SERTAD2, 
ELFN1, and LINC00672 were significantly correlated with key immune cell types. Additionally, 18 drugs displayed differential sensitivity 
between NETs_high and NETs_low groups, with Daporinad and Selumetinib as potential therapeutic options.
Conclusion: Our findings may catalyze the development of personalized treatment modalities and bestow invaluable insights into the 
intricate dynamics governing CRC progression.
Keywords: Neutrophil extracellular traps, colorectal cancer, prognostic, immune profiles, drug sensitivity

INTRODUCTION
Colorectal cancer (CRC) is a widespread malignant 
tumor that significantly impacts global health, leading 
to high incidence and mortality rates.1 Colorectal cancer 
accounts for 11% of all cancer diagnoses,2 represent-
ing approximately 10% of common cancers worldwide 
and cancer-related deaths annually.3 Colorectal cancer 
usually originates from genetic mutations or instability, 
causing uncontrolled division and proliferation of normal 
colonic mucosal cells.4 Risk factors for developing CRC 
may include dietary choices, environmental exposures, 
genetic predisposition, and lifestyle factors.5,6 Presently, 
the primary treatment modalities for CRC involve surgi-
cal resection, radiation therapy, chemotherapy, targeted 
therapy, and immunotherapy.7 Despite significant prog-
ress in diagnosis and therapy methods, the side effects 
and drug resistance that occur during the treatment 
process can hinder patients’ recovery to some extent.8 

Therefore, to better formulate personalized treatment 
plans, reduce patient discomfort, and enhance treatment 
effectiveness, identifying new treatment targets and reli-
able prognostic markers is a top priority.

Recent research has highlighted the role of neutrophil 
extracellular traps (NETs) in CRC, offering potential as 
prognostic indicators.3 Neutrophil extracellular traps are 
complex web-like structures composed of DNA, histones, 
and granule proteins released by activated neutrophils.9 
Neutrophil extracellular traps are initially believed to play 
an immune defense role during infection and inflamma-
tion processes by helping to protect the body by captur-
ing and clearing microbes and pathogens.10 New studies 
have revealed their multifaceted involvement in various 
pathological conditions, including cancer, such as tumor 
development, angiogenesis, metastasis, and cancer-
related thrombosis.11 In CRC, NETs have gained attention 
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due to their ability to influence the tumor microenviron-
ment, exacerbate inflammation, and modulate immune 
responses.12 Zhang et al13 found that the levels of NETs 
in peripheral blood increase with CRC progression, and 
neutrophils from CRC patients are more easy to produce 
NETs. The NET score risk model constructed by Li et al 
provides a foundation for better prognosis and treatment 
outcomes for gastric cancer patients.14 However, con-
firmed NETs-related biomarkers in CRC are still absent. In 
summary, a comprehensive analysis of NETs in relation to 
CRC may lead to discoveries.

This study aims to explore the significance of NETs in CRC 
by examining their impact on immune characteristics, drug 
sensitivity, and patient prognosis. Firstly, transcriptomic, 
clinical, and file annotation data for CRC were obtained 
from The Cancer Genome Atlas (TCGA) database. A list of 
207 NETs-related genes was compiled through literature 
research and GeneCards database searches. Differential 
analysis, univariate and multivariate Cox analysis, as well 
as the Least Absolute Shrinkage and Selection Operator 
(LASSO) analysis, were employed to construct a CRC 
prognostic model based on 4 NET-related differentially 
expressed genes (DEGs). The model’s predictive perfor-
mance was validated. Additionally, bioinformatics analy-
ses were conducted to assess the correlation between 
NETs_high and NETs_low score groups with the “neutro-
phil extracellular trap formation” pathway, differences in 
immune infiltration, drug sensitivity, and immune charac-
teristics of the tumor microenvironment. This study sug-
gested a new perspective for better understanding the 
role of NETs in CRC, adjusting treatment strategies, and 
significantly improving patient care.

MATERIALS AND METHODS
Colorectal Cancer Data Retrieval
Colorectal cancer transcriptome dataset (455 samples), 
clinical data, and file annotations were retrieved from the 
TCGA database (https​://po​rtal.​gdc.c​ancer​.gov/​) using the 
keyword “TCGA-COAD.” Furthermore, 2 CRC datasets 

from the GEO database (https​://ww​w.ncb​i.nlm​.nih.​gov/), 
namely GSE17536 (177 samples) and GSE29621 (65 
samples), were obtained. The files from the GEO data-
base were processed to obtain CRC transcriptome data 
and clinical data, which were used for validation in the 
prognostic model.

Neutrophil Extracellular Traps Pathway Score 
Calculation Based on Colorectal Cancer Samples in The 
Cancer Genome Atlas
Neutrophil extracellular trap-related genes were 
obtained through literature research and a search in the 
GeneCards15 database (using the keyword “neutrophil 
extracellular”). The GSVA program package16 in R Version 
4.3.2 was used to calculate gene set scores based on 
CRC patient samples in the TCGA transcriptome data. 
Subsequently, CRC patient samples were divided into 
high-scoring samples (NETs_high) and low-scoring sam-
ples (NETs_low) based on the median score. The risk 
scores between the 2 groups were estimated using the 
survival package in R Version 4.3.2.17

Screening Neutrophil Extracellular Trap-related 
Differentially Expressed Genes in Colorectal Cancer
Based on the grouping into NETs_high vs. NETs_low, 
NETs-related DEGs in CRC were selected using the limma 
package in R Version 4.3.2,18 with filtering criteria of 
P-value < .05 and |log2FC| > 0.1. Subsequently, the DEGs 
were visualized using the ggplot2 package in R Version 
4.3.2.19

Screening Prognosis-related Genes in Colorectal 
Cancer
Cox regression model, which is capable of simultaneously 
analyzing the influence of multiple factors on survival 
duration,20 was utilized. The survival package in R Version 
4.3.2 was employed to conduct a single-factor Cox 
regression analysis. Genes associated with CRC prognosis 
were screened based on NETs-related DEGs, with signifi-
cance defined as P < .05.

Least absolute shrinkage and selection operator 
(LASSO) Regression for Prognostic Modeling
Based on the selection of genes associated with CRC 
prognosis, 50% of the samples were randomly chosen 
as a training set, while the remaining 50% were desig-
nated as a testing set. Simultaneously, the GSE17536 
and GSE29621 datasets were employed as external test-
ing sets. The glmnet package in R Version 4.3.2,21 utilizing 

Main Points
•	 The accurate CRC prognostic model consists of PRKRIP1, 

SERTAD2, ELFN1, and LINC00672.
•	 Low NETs are associated with a poor prognosis in CRC 

patients.
•	 Daporinad and selumetinib, significantly associated with 

core genes, are identified as promising therapeutic drugs.
•	 SERTAD2 is positively correlated with the “neutrophil 

extracellular trap formation” pathway.
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the Cox method, was employed for LASSO regression 
analysis. Genes were selected for building the prognostic 
model based on lambda.1se. Risk scores for each sample 
were computed using the risk function, and samples 
were categorized into high- and low-risk groups based 
on the median value. Kaplan–Meier (KM) survival curves 
were constructed using the KM method, and differences 
between high- and low-risk groups were tested through 
the Log-Rank test (P < .05). Receiver operating charac-
teristic (ROC) curves were plotted to assess the diagnos-
tic value of the model. Finally, the predictive performance 
of the model was evaluated using the testing set.

Gene Set Variation Analysis (GSVA) Enrichment 
Analysis
In the KEGG database,22 a search for pathways related to 
NETs revealed a pathway named “neutrophil extracellu-
lar trap formation.” Using the GSVA package in R version 
4.3.2, pathway scores for the NETs_high and NETs_low 
groups were calculated based on the CRC transcriptome 
data in the TCGA database. The correlation between 
prognostic model genes and the “neutrophil extracellular 
trap formation” pathway was assessed.

Immune Infiltration Analysis
For CRC samples, expression levels of all genes within the 
sample were arranged in descending order, and enrich-
ment scores for gene sets were calculated at each posi-
tion. Subsequently, these scores at each position were 
averaged or weighted, yielding the ssGSEA23 score for the 
sample concerning that gene set. Differences in immune 
cells between the NETs_high and NETs_low groups were 
examined using a t-test (P < .01), and the correlation 
between differentially expressed immune cells and prog-
nostic genes was determined.

Estimate Immunization Score
The ImmuneScore and ESTIMATEScore of CRC samples 
were computed using the EESTIMATE24 index based on 
TCGA transcriptomic data. These scores provide infor-
mation regarding tumor purity, the presence of stromal 
cells, and the level of immune cell infiltration within tumor 
tissues. Subsequently, t-tests were performed to assess 
the differences in ImmuneScore and ESTIMATEScore 
between the NETs_high and NETs_low groups (P < .05).

Drug Sensitivity Prediction
The oncoPredict25 package in R Version 4.3.2 is used 
for predicting drug sensitivity based on gene expression 

levels. The calcPhenotype function within this package 
was employed to predict drug sensitivity for CRC patient 
samples based on the GDSC2 database (https://osf.io/
c6tfx/). Differences in drug sensitivity between the NETs_
high and NETs_low groups were examined using a t-test, 
and differential drugs were selected. Pearson correlation 
coefficients were computed to evaluate the correlation 
between drugs and the genes of interest. Subsequently, a 
correlation t-test was conducted to identify drugs signifi-
cantly associated with prognostic genes.

RESULTS
Screening Neutrophil Extracellular Trap-related 
Differentially Expressed Genes in Colorectal Cancer
A total of 207 NETs-related genes were obtained through 
literature research and a search in the GeneCards data-
base. With 207 NETs-related genes as the background 
gene set, GSVA enrichment analysis was performed on 
the transcriptomic data of CRC patients in the TCGA 
database. According to the median NETs score, the sam-
ples were stratified into NETs_high and NETs_low groups. 
Kaplan–Meier curves revealed that the NETs_high group 
exhibited a notably superior survival probability compared 
to the NETs_low group (Figure 1A, P < .0001). Besides, 
the differential analysis revealed 642 DEGs between the 
NETs_high and NETs_low groups, with 273 genes signifi-
cantly upregulated and 369 genes significantly downreg-
ulated in the NETs_high group (Figure 1B, P < .05). The 
expression patterns of the DEGs further emphasized the 
distinctive molecular signatures associated with NETs in 
CRC.

Screening Prognosis-related Genes in Colorectal 
Cancer and Constructing Prognostic Modeling
Subsequently, 11 CRC prognosis-related genes (NOXA1, 
PIP4K2B, PRKRIP1, SERTAD2, PRELID2, ZNF160, OLFM2, 
CAPRIN2, ELFN1, LINC00672, and PRR4) were selected 
based on the identified 642 DEGs (Figure 2A, P < .01). To 
build a robust prognostic risk model, CRC patient sam-
ples from the TCGA database were randomly divided 
into training and testing sets at a ratio of 1:1. In the 
training set, the 11 CRC prognosis-related genes were 
subjected to LASSO Cox regression analysis, and cross-
validation was performed using the cv.glmnet function. 
Finally, 4 selected genes (PRKRIP1, SERTAD2, ELFN1, and 
LINC00672) were selected and then used to construct 
the prognostic model (Figure 2B). The prognostic model 
risk score was calculated as follows: y = 0.326894684 
× PRKRIP1 + 0.485512958 × SERTAD2 + 0.12480397 × 
ELFN1 + 0.102761318 × LINC00672.

https://osf.io/c6
https://osf.io/c6
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The diagnostic value of the model was further assessed. 
The CRC samples were stratified into high- and low-risk 
groups based on the median risk score of samples in 
the training set. The high-risk group in the training set 
exhibited significantly lower survival rates than the low-
risk group (P = .011, Figure 2C). The ROC curve results 
indicated good model accuracy at different time points 
(1-year, 2-year, 3-year) in the training set (AUC values > 
0.667, Figure 2C). In the testing set, the high-risk group 
also exhibited significantly lower survival rates (P = .02, 
AUC value > 0.657, Figure 2D). To further validate the 
prognostic value of the model in the training set, exter-
nal validation was performed using the GSE17536 and 
GSE29621 datasets (Figure 2E and F). The results showed 
that in both GES17536 (P < .0001, AUC value > 0.622) 
and GSE29621 (P = .032, AUC value > 0.644) datasets, 
the high-risk group suggested significantly lower survival 
than the low-risk group. This novel model underscored its 
role in predicting patient outcomes.

GSVA Enrichment Analysis
To explore the relationship between the identified 4 
prognostic genes (PRKRIP1, SERTAD2, ELFN1, and 
LINC00672) and the “neutrophil extracellular trap for-
mation” pathway, a GSVA enrichment analysis was con-
ducted on the pathway related to NETs based on the 
TCGA dataset. The analysis indicated that the NETs_high 
group had significantly higher pathway scores compared 
to the NETs_low group (Figure 3A, P < 2.22 × 10–16). 
Furthermore, a significant positive correlation between 
SERTAD2 and the “neutrophil extracellular trap forma-
tion” pathway was observed (Figure 3B, P < .05). This 
implied that the SERTAD2 gene might play an important 
role in regulating this pathway.

Immune Infiltration Analysis and Estimate 
Immunization Score
Neutrophil extracellular traps are closely linked to the 
immune microenvironment26 and immune cells infiltra-
tion might be a predictive indicators in CRC.27 Therefore, 
we examined the differences in the abundance of 23 
immune cell types (epithelial cells, mast cells, endothelial 
cells, stromal cells, fibroblasts, NKT, neutrophils, eosino-
phils, dendritic cells, monocytes, macrophages, T cells 
helper, T cells regulatory (Tregs), T cells CD4 naïve, T 
cells gamma delta, T cells CD4 memory, T cells CD8, NK 
cells, T cells, Plasma cells, B cells naïve, B cells memory, 
B cells) between the NETs_high and NETs_low groups 
(Figure 4A). Apart from NKT cells which had no significant 
difference between the 2 groups, the ssGSEA scores for 
the other 22 immune cell types in the NETs_high group 
were significantly higher than those in the NETs_low 
group (Figure 4A, P < .01), confirming the differences in 
the immune environment between the NETs_high and 
NETs_low groups.

Furthermore, we analyzed the correlations between the 23 
immune cell types and the 4 prognostic genes (PRKRIP1, 
SERTAD2, ELFN1, and LINC00672). The results revealed 
that SERTAD2 and ELFN1 were positively correlated with 
T cells CD8, T cells CD4 naive, T cells CD4 memory, T cells, 
stromal cells, NK cells, macrophages, fibroblasts, eosino-
phils, endothelial cells, and B cells naive, while SERTAD2 
was negatively correlated with plasma cells, and ELFN1 
was negatively correlated with NKT cells (Figure 4B and D, 
P < .05). Furthermore, PRKRIP1 exhibited negative correla-
tions with most immune cell types except plasma cells and 
NKT cells (Figure 4C, P < .05). LINC00672 was positively 
correlated with T cells regulatory (Tregs) and negatively 

Figure 1.  Screening NETs-related DEGs in colorectal cancer (CRC). (A) KM survival analysis of NETs_high and NETs_low groups. (B) Volcano 
plots (left) and clustered heatmaps (right, top 30 according to |log2FC|) of the differentially expressed genes (DEGs) in NETs_high and NETs_
low groups.
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correlated with plasma cells, NK cells, neutrophils, mono-
cytes, macrophages, and epithelial cells (Figure 4E, P < 
.05). For a deeper insight into the immune characteris-
tics of CRC samples associated with NETs features, we 
computed the immune scores for both the NETs_high 
and NETs_low groups. As shown in Figure 4F, both the 
ESTIMATEScore and ImmuneScore in the NETs_high 
group are significantly higher than those in the NETs_low 
group (P < .001). This indicates that the NETs_high group 
may have a more active immune response and a higher 
presence of fibroblasts in their tumor microenvironment.

Drug Sensitivity Prediction
In order to gain further insights into drug treat-
ment strategies associated with NETs lev-
els, the variations between the NETs_high and 
NETs_low groups were evaluated in terms of the sensi-
tivity scores for 18 drugs (AZD2014_1441, BI.2536_1086, 
BMS.754807_2171, Bortezomib_1191, CZC24832_1615, 
Dabrafenib_1373, Daporinad_1248, Entospletinib_1630, 
GSK2606414_1618, Irinotecan_1088, JAK1_8709_1718, 
MG.132_1862, MK.8776_2046, PLX.4720_1036, 
Ribociclib_1632, RO.3306_1052, Selumetinib_1736, 

Figure  2.  Screening prognosis-related genes in CRC and constructing prognostic modeling. (A) Forest map of prognosis-related genes 
screened by COX regression algorithm. (B) The relationship curve between LASSO regression coefficients and Lambda (left) and the cross-
validation curve (right). (C) The Kaplan–Meier (KM) curve and ROC curve for the training set. (D) The KM curve and ROC curve for the testing 
set. (E) The KM curve and ROC curve for the GES17536 dataset. (F) The KM curve and ROC curve for the GSE29621 dataset.
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WZ4003_1614) (Figure 5A). The results demonstrated 
significant differences in the sensitivity to these 18 
drugs between the NETs_high and NETs_low groups. 

Specifically, the NETs_high group exhibited signifi-
cantly higher sensitivity to the drugs BI.2536_1086 and 
RO.3306_1052, while the NETs_low group displayed 

Figure 3.  GSVA enrichment. (A) The differences in GSVA scores between NETs_high and NETs_low groups for the “neutrophil extracellular 
trap formation” pathway. (B) Correlation analysis between 4 prognostic genes (PRKRIP1, SERTAD2, ELFN1, and LINC00672) and the 
“neutrophil extracellular trap formation” pathway. *P < .05.

Figure 4.  Immune infiltration analysis and ESTIMATE immunization score. (A) The differences in ssGSEA scores between NETs_high and 
NETs_low groups for the 23 immune cells. (B) Correlation analysis between SERTAD2 and the 23 immune cells. (C) Correlation analysis 
between PRKRIP1 and the 23 immune cells. (D) Correlation analysis between ELFN1 and the 23 immune cells. (E) Correlation analysis 
between LINC00672 and the 23 immune cells. (F) The differences in ESTIMATE score (left) and Immune score (right) between NETs_high 
and NETs_low groups. *P < .05, **P < .01, ***P < .001, ****P < .0001.
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significantly higher sensitivity to the remaining 16 drugs 
(P < .001).

Subsequently, 3 differentially responsive drugs 
(Daporinad_1248, Selumetinib_1736, GSK2606414_1618) 
were selected by calculating the Spearman correlation 

between the 4 prognosis genes (PRKRIP1, SERTAD2, 
ELFN1, and LINC00672) and the 18 drugs (Figure 5B). We 
further verified 2 common drugs, Daporinad_1248 and 
Selumetinib_1736, through a search on DrugBank (https​
://ww​w.dru​gbank​.com/​). The results revealed significant 
differences in drug sensitivity based on NETs levels and 

Figure  5.  Drug sensitivity prediction. (A) Box plots of sensitivity to 18 drugs (AZD2014_1441, BI.2536_1086, BMS.754807_2171, 
Bortezomib_1191, CZC24832_1615, Dabrafenib_1373, Daporinad_1248, Entospletinib_1630, GSK2606414_1618, Irinotecan_1088, 
JAK1_8709_1718, MG.132_1862, MK.8776_2046, PLX.4720_1036, Ribociclib_1632, RO.3306_1052, Selumetinib_1736, and WZ4003_1614) 
in the high NETs and low NETs groups. (B) Scatterplot of significant correlation between drugs (Daporinad_1248, Selumetinib_1736, 
GSK2606414_1618) and prognostic genes (ELFN1, PRKRIP1, and SERTAD2), respectively.

https://www.drugbank.com/). 
https://www.drugbank.com/). 
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identified Daporinad_1248 and Selumetinib_1736 as 
potential responsive drugs through correlation analysis.

DISCUSSION
Colorectal cancer is one of the most commonly diag-
nosed and one of the most common cancer-cause death 
worldwide.1 Neutrophils are the most abundant white 
blood cells and play a crucial role in the immune system, 
particularly in innate immunity.28 In tumors like CRC, 
NETs have gained significant attention because they may 
influence tumor growth and development by impact-
ing the tumor microenvironment, exacerbating inflam-
mation, and modulating the immune response.12 In this 
study, it was observed that the NETs_high group exhib-
ited significantly higher survival probabilities compared to 
the NETs_low group. This suggested that the NETs_high 
group might have a more active immune response and, 
as a result, better survival prospects. Subsequent findings 
further corroborated this hypothesis. The infiltration levels 
of 22 immune cell types, as well as the ImmuneScore and 
ESTIMATEScore, were all higher in the NETs_high group. 
Neutrophil extracellular traps might potentially exert an 
anti-tumor effect, possibly by triggering immune sys-
tem activation.29 This could impact the tumor’s immune 
response, subsequently influencing tumor development 
and patient prognosis.

Understanding the prognosis of CRC is crucial for guid-
ing the direction of selecting appropriate treatment 
strategies for patients.30 Research has identified a cor-
relation between NETs scores and survival rates in vari-
ous types of cancer, leading to the development of a 
pan-cancer prognostic marker centered around NETs.31 
In the present study, a prognostic model for CRC was 
established based on NETs-related DEGs (PRKRIP1, 
SERTAD2, ELFN1, and LINC00672). Kaplan–Meier 
analysis of both a training and a testing set composed 
of CRC samples demonstrated the excellent predic-
tive performance of this model. Furthermore, external 
validation through KM curves constructed from the 
GSE17536 and GSE29621 datasets affirmed the pre-
dictive accuracy of the model.

PRKRIP1 encodes a protein typically associated with 
interferon regulation and antiviral immune responses.32 
Ozato et al32 determined, through bioinformatics meth-
ods and immunohistochemistry, that overexpression of 
PRKRIP1 is an adverse prognostic biomarker for CRC. 
SERTAD2 is also implicated in tumorigenesis, as it is over-
expressed in several cancers.33 SERTAD2 is considered 

to have significant prognostic value in pancreatic duc-
tal adenocarcinoma.34 Moreover, the positive correla-
tion between SERTAD2 and the “neutrophil extracellular 
trap formation” pathway might involve the regulation 
or participation of the SERTAD2 gene in this biological 
pathway. However, specific associations require further 
research for clarification. ELFN1 encodes a protein typi-
cally found in the extracellular matrix and is involved in 
cell adhesion and signaling.35 He et  al36 demonstrated 
that ELFN1-AS1 promotes CRC’s immune escape from 
NK cells by facilitating the binding of GCN5 and SND1 
to GDF15, considering ELFN1-AS1 as a potential thera-
peutic target for CRC. This study also verified the posi-
tive correlation between ELFN1 and NK cells. LINC00672 
is a long-stranded non-coding RNA (lncRNA) associated 
with many diseases and tumors.37 Mendelaar et al38 found 
that mutations in LINC00672 present in CRC patients 
may affect the efficacy of general treatment methods. 
Furthermore, PRKRIP1, SERTAD2, ELFN1, and LINC00672 
were either positively or negatively correlated with major 
cell types in 23 immune cell types. This correlation could 
potentially impact the immune response to tumors and 
patient prognosis. However, specific mechanisms and 
biological significance require further in-depth research 
for detailed explanations.

The differences in the immune environment between the 
NETs_high and NETs_low groups, as well as the 4 genes 
used to construct the prognostic model, suggested that 
immunotherapy might offer more assistance to high-risk 
patients. For both groups of patients, we selected drugs 
that were sensitive to their treatment. Subsequently, we 
further screened drugs significantly associated with prog-
nostic genes (Daporinad_1248 and Selumetinib_1736). 
Daporinad (also known as RST-001) primarily functions 
by inhibiting NAD(P)H quinone dehydrogenase 1. It has 
been observed by Sharior et al in a mouse model of ovar-
ian cancer that treatment with olaparib (a PARP inhibitor) 
and Daporinad (an NAMPT inhibitor) can deplete intracel-
lular NAD+.39 This depletion of NAD+ leads to the induction 
of double-strand DNA breaks and promotes apoptosis by 
caspase-3 cleavage, thereby reducing the development 
of therapeutic resistance in ovarian cancer.39 Selumetinib 
(Koselugo) is an orally administered selective inhibitor of 
MEK 1 and 2,40 which are components of the MAPK sig-
naling pathway.41 Song et al42 found that the combination 
of Selumetinib with hesperetin enhances the inhibitory 
effects on the MAPK signaling pathway in CRC. These 
findings can potentially provide more personalized treat-
ment options and improve therapeutic outcomes for CRC 
patients.
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CONCLUSION
In conclusion, this study investigated the significance of 
NETs in CRC and their impact on prognosis. We iden-
tified a distinct gene signature using comprehensive 
analyses and constructed a robust prognostic model 
based on 4 genes (PRKRIP1, SERTAD2, ELFN1, and 
LINC00672). The model demonstrated strong predic-
tive power for patient outcomes, which was validated 
in external datasets. Furthermore, our analysis revealed 
a link between NETs and immune responses in CRC. 
NETs_high samples exhibited an enriched immune 
environment, potentially influencing CRC prognosis. 
Additionally, we identified 18 drugs with varying sensi-
tivity between NETs_high and NETs_low groups, with 
2 promising drugs, Daporinad and Selumetinib, show-
ing potential for personalized treatment. These findings 
shed light on the complex interplay of NETs, immune 
responses, and drug sensitivity in CRC, offering insights 
into better prognosis prediction and tailored therapeu-
tic strategies for CRC patients.
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