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ABSTRACT
Background/Aims: The purpose of this study is to screen the feature genes related to gut microflora and explore the role of the genes in 
predicting the prognosis of patients with gastric cancer.
Materials and Methods: We downloaded the gene profile of gastric cancer from the University of California Santa Cruz, the gut micro-
flora related to gastric cancer from The Cancer Microbiome Atlas. The GSE62254 dataset was downloaded from National Center for 
Biotechnology Information Gene Expression Omnibus as a validation dataset. A correlation network between differentially expressed 
genes and gut microflora was constructed using Cytoscape. The optimized prognostic differentially expressed genes were identified 
through least absolute shrinkage and selection operator (LASSO) algorithm and univariate Cox regression analysis. The risk score model 
was established and then measured via Kaplan–Meier and area under the curve. Finally, the nomogram model was constructed accord-
ing to the independent clinical factors, which was evaluated using C-index.
Results: A total of 754 differentially expressed genes and 8 gut microflora were screened, based on which we successfully constructed the 
correlation network. We obtained 9 optimized prognostic differentially expressed genes, including HSD17B3, GNG7, CHAD, ARHGAP8, 
NOX1, YY2, GOLGA8A, DNASE1L3, and ABCA8. Moreover, Kaplan–Meier curves indicated the risk score model correctly predicted the 
prognosis of gastric cancer in both University of California Santa Cruz and GSE62254 dataset (area under the curve >0.8; area under 
the curve >0.7). Finally, we constructed the nomogram, in which the C index of 1, 3, and 5 years was 0.824, 0.772, and 0.735 representing 
that the nomogram was consistent with the actual situation.
Conclusions: These results indicate the 9 differentially expressed genes related to gut microflora might predict the survival time of 
patients with gastric cancer. Both risk signature and nomogram could effectively predict the prognosis for patients with gastric cancer.
Keywords: Gastric cancer, gut microflora, nomogram, prognosis

INTRODUCTION
Gastric cancer (GC) is an incurable malignant tumor 
worldwide, which led to about 800 000 deaths based 
on GLOBOCAN 2020 estimates and is regarded as the 
fourth leading cause of cancer deaths.1 Surgical treat-
ment is still considered as the first line of therapy for 
patients with GC.2,3 Nevertheless, effective therapeutic 
strategies for GC patients include surgery, neoadjuvant, 
therapy, radiotherapy, and chemotherapy. However, sta-
tistical evidence has revealed that GC patients remain to 
have a low 5 overall survival rate.4 Besides, due to the high 
recurrence rate of GC patients treated with surgery or 
other treatment methods, patients have a poor progno-
sis.5,6 Therefore, reducing the incidence of GC remains the 
key to reducing mortality.

Studies have confirmed that gut microflora participates 
in the body’s nutrition, metabolism, and immunity.7,8 The 

changes in gut microflora can also lead to the occurrence 
and development of inflammation.9 Moreover, previous 
study has reported that the occurrence and progression 
of GC are involved in various viral, parasitic, or bacterial 
infections.10 It is reported that due to the extreme acidity 
of the stomach, its microbial abundance is the lowest.11 
Microbial species in the gastrointestinal tract constitute 
the microbiota, which refers to the microbial ecological 
community found in a specific environment. The inter-
action of microbiota with different types of host cells 
can regulate physiological functions and organ microen-
vironment.12 The process of GC has a close association 
with the changes of cell pathophysiology and microbial 
characteristics.13,14 Besides, gut microflora in GC has a 
significant effect on the clinical outcomes of chemo-
therapy, radiotherapy, and immunotherapy, indicating 
that gut microflora may be the novel targets for improv-
ing antitumor therapy. With the development of modern 
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molecular biology technology, the deepening of metage-
nomics research, and the progress of metabolomics, more 
attention has been paid to the study of gut microbiota 
and its metabolism. The relationship between GC and gut 
microflora has attracted more attention. There are many 
reports on the relationship between human gut micro-
flora and GC. 

Most reports focused on the different genera of bac-
teria in the occurrence and development of tumors. 
Ai et al15 indicated that bacteria (such as Helicobacter, 
Streptomonospora, and Acinetobacter) may be involved 
in tumor progression as potential characteristic genera. 
Besides, Li et al16 identified novel and consistent micro-
bial patterns in gastric carcinogenesis. However, there 
are few reports on the relationship between microbiota 
and prognosis in GC. Therefore, based on the clinical 
prognostic information and gene expression profiles of 
the cancer genome atlas (TCGA) samples and combined 
with the database The Cancer Microbiome Atlas (TCMA) 
of gut microbiota, we aimed to search for the microor-
ganisms related to the prognosis of gut microbiota in GC. 
In addition, we characterized the clinical and functional 
characteristics of different phenotypic samples based on 
transcriptome data and then explored key genes related 
to gut microbiota in GC.

MATERIALS AND METHODS
Data Source and Preprocessing
The gene expression level (normalized log(FPKM+1,2) expres-
sion value) of GC was obtained from the University of 
California Santa Cruz (UCSC) Xena (https ://xe nabro wser. 
net/d atapa ges/) . Subsequently, we obtained 407 sam-
ples based on the platform of Illumina HiSeq 2000 RNA 
Sequencing. Meanwhile, we obtained the GC-related 
microflora data including 166 samples from The Cancer 
Microbiome Atlas (TCMA, https ://tc ma.pr att.d uke.e du/).17 
We retained the samples that were detected in both 
UCSC and TCMA databases. According to the clinical 
information of samples, we obtained 91 GC samples and 
9 control samples with clinical prognosis information that 
were regarded as the training dataset.

Besides, we downloaded the GSE6225 including 300 
samples with clinical prognosis information from National 
Center for Biotechnology Information Gene Expression 
Omnibus (NCBI GEO, https ://ww w.ncb i.nlm .nih. gov/
geo/)18 on the basis of the platform of GP570 Affymetrix 
Human Genome U133 Plus 2.0 Array. This dataset was 
considered as a validation dataset to establish a survival 
prognostic model.

Screening of Differentially Distributed Microflora and 
Expressed Genes
According to the GC-related microflora data in the TCMA 
database, the t-test of R 3.6.1 (http: //127 .0.0. 1:15190/li 
brary /stat s/htm l/t.t est.h tml) was applied for comparing 
the microflora distribution between GC tumor and normal 
samples. The cutoff was set as P < .05.

Then, the limma package (Version 3.34.7, https ://bio-
conductor .org/ packa ges/r eleas e/bio c/htm l/limma.
html)19 in R 3.6.1 was carried out to screen the differ-
entially expressed genes (DEGs) from GC tumor and 
normal samples of GC-related gene expression profil-
ing data in UCSC. The threshold was set to false dis-
covery rate (FDR)<0.05且|log2FC|>1. The expression 
of the screened DEGs was exhibited using heatmap 
(https://cran.r- proje ct.or g/web /pack ages/ pheat map/
index. html)20 that was constructed using bidirectional 
hierarchical clustering analysis on the basis of centered 
Pearson correlation algorithm.21

Main Points
• We screened 9 differentially expressed genes related to gut 

microflora that might be associated with prognosis of gas-
tric cancer (GC). 

• The risk score and nomogram model could effectively pre-
dict the prognosis for GC.

Figure 1. Screening of differentially distributed microflora and 
expressed genes. Distribution map of gut microbiota with significantly 
different distributions in gastric cancer tumor and normal control 
samples. ***P < .005. 

https://xenabrowser.net/datapages/)
https://xenabrowser.net/datapages/)
https://tcma.pratt.duke.edu/)
https://www.ncbi.nlm.nih.gov/geo/)
https://www.ncbi.nlm.nih.gov/geo/)
http://127.0.0.1:15190/library/stats/html/t.test.html)
http://127.0.0.1:15190/library/stats/html/t.test.html)
https://bioconductor.org/packages/release/bioc/html/limma.html)
https://bioconductor.org/packages/release/bioc/html/limma.html)
https://bioconductor.org/packages/release/bioc/html/limma.html)
https://cran.r-project.org/web/packages/pheatmap/index.html)
https://cran.r-project.org/web/packages/pheatmap/index.html)


Yue et al. Nine-Genes for Predicting Prognosis of GC PatientsTurk J Gastroenterol 2024; 35(2): 102-111

104

Screening of Differentially Expressed Genes 
Significantly Related to Gut Microflora Distribution
The cor function in R3.6.1 (http: //77. 66.12 .57/R -help /cor. 
test. html)  was performed to calculate the Pearson cor-
relation coefficient (PCC) between the screened DEGs 
and species of gut microbiota with significantly different 
distributions. The cutoff was set for P < .05 and |PCC| > 
0.3. Subsequently, the related network was constructed 
based on the significantly correlated pairs, which were 
visualized through Cytoscape (Version 3.6.1, https ://
cytosca pe.or g/).22 After that, the Gene Ontology Biology 
Process (GO-BP) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) based on DAVID (Version 6.8, https://
david.n cifcr f.gov /)23,24 were carried out to analyze the 
function and pathways on the DEGs related to gut micro-
flora with the threshold of P < .05.

Construction of Survival Prognosis Model
According to the clinical information of samples including 
survival prognosis, the univariate Cox regression analysis 
(Version 2.41-1, http: //bio condu ctor. org/p ackag es/sur-
viva lr/) of the survival package in R3.6.1 25 was carried out 
to identify the DEGs correlated with prognosis. The value 
of log-rank P < .05 was regarded as significant. Then, we 
carried out regression analysis via the LASSO algorithm of 
the lars package in R3.6.1 (Version 1.2, https ://cr an.r- proje 
ct.or g/web /pack ages/ lars/ index .html )26 on DEG-related 
prognosis to screen the optimized DEG combinations.

According to the LASSO prognostic coefficient and 
expression level of the DEG combinations, we established 
the risk score (RS) model using the following formula: RS 
= ∑ CoefDEGs × ExpDEGs. In this formula, CoefDEGs indicate 
the prognostic coefficients of DEGs and ExpDEGs repre-
sent the expression of target DEGs.

To evaluate the efficacy of the RS prognosis model, we 
first calculated the RS value in the UCSC training dataset. 
Then, we separated the GC samples into low- and high-
risk groups using the RS median value. The Kaplan–Meier 
(KM) analysis of the survival package in R3.6.1 (Version 
2.41-1)25 was carried out to assess the correlation 
between grouping situation of high- or low-risk groups 
and actual information on patients’ prognosis. Meanwhile, 
the KM curves of the GSE62254 validation dataset were 
obtained using the same method as the UCSC training 
dataset.

Analysis of Clinical Factors
To analyze the clinical information from high-risk group to 
low-risk group, Fisher’s exact test in R3.6.1 was conducted 

for the UCSC GC tumor samples. Then, univariate and 
multivariate Cox regression analyses25 were performed 
to obtain the independent survival prognosis clinical fac-
tors with the threshold of log-rank P < .05. Furthermore, 
combining with the risk grouping discriminated by the 

Table 1. Distribution and Comparison of Clinical Parameters in 
Different Risk Groups

Characteristics 

Total 
Cases  

(n = 91)

Group

P
Low Risk 
(n = 45)

High Risk 
(n = 46)

Age (years)
 ≤60 30 13 17 5.05E-01
 >60 61 32 29
Gender
 Male 59 27 32 3.85E-01
 Female 32 18 14
Pathologic M
 M0 80 40 40 9.99E-01
 M1 11 5 6
Pathologic N
 N0 32 18 14 6.23E-01
 N1 29 13 16
 N2 14 8 6
 N3 13 5 8
Pathologic T
 T1 3 2 1 5.13E-01
 T2 36 17 19
 T3 35 16 19
 T4 13 9 4
Pathologic stage
 I 17 11 6 4.21E-01
 II 32 14 18
 III 22 12 10
 IV 13 5 8
Neoplasm histologic grade
 G1 3 2 1 1.79E-01
 G2 31 19 12
 G3 57 24 33
Microsatellite status
 MSS 55 32 23 1.86E-01
 MSI-L 20 7 13
 MSI-H 15 6 9
Recurrence
 Yes 21 5 16 1.82E-03
 No 49 32 17
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prognostic prediction model, we constructed the 1, 3, and 
5 years nomogram based on the screened independent 
clinical elements via the rms package (https ://cr an.r- proje 
ct.or g/web /pack ages/ rms/i ndex. html) .27,28 After that, the 
survcomp (Version 1.34.0) in R3.6.1 was used to calculate 
the C-index coefficient of nomogram.29 A C-index above 
0.70 indicated a good model.30,31

Correlation Analysis Between the Differentially 
Expressed Genes and the Distribution of Gut Bacteria
To study the correlation between feature DEGs and the 
distribution of gut bacteria, we conducted the cor func-
tion in R3.6.1 to compute the PCC value between the 
expression level of the feature DEGs and gut bacteria. The 
results were shown as the correlation heatmap.

RESULTS
Screening of Differentially Distributed Microflora and 
Expressed Genes
A total of 91 GC tumor samples were obtained after 
the comparison between UCSC and TCMA datasets. 
As shown in Figure 1, 8 gut bacteria were significantly 
associated with GC using t-test, in which the distribution of 
Clostridia, Bacilli, Streptococcuaceae, Streptococcus, 
Lactobacillales, Clostridiales, and Firmicutes in tumor was 
higher than that in normal samples (P < .01). However, the 
distribution of Proteobacteria in GC tumor samples was 
significantly lower than that in normal control samples (P 
< .01). The types and distribution information of the dif-
ferentially expressed flora are shown in Table 1. Besides, 
we obtained 754 DEGs in the UCSC training dataset using 
the limma method (Figure 2A). The heatmap of the 745 
DEGs was shown in Figure 2B, indicating that screened 
DEGs were consistent in the degree of difference and the 
direction of dysregulation in the dataset.

Screening of Differentially Expressed Genes 
Significantly Related to Gut Microflora Distribution
According to the PCC value between DEGs and 8 types of 
gut flora, we constructed the correlation network including 
332 significantly correlated pairs. This network contained 
212 nodes, of which 8 nodes were gut microbiota and 204 
were DEG nodes. Among these DEGs, COL11A1 was corre-
lated with both Proteobacteria and Firmicutes, KRTAP3-1 
was associated with Clostridia and Clostridiales. Then, 
the GO and KEGG results indicated that these 204 DEGs 
were involved in 20 GO BPs, such as GO:0006260~DNA 
replication, GO:00 70268 ~corn ifica tion and GO:00 
31424 ~kera tiniz ation , and 8 KEGG pathways including 
hsa00830:Retinol metabolism, hsa03440:Homologous 

Table 2. Biological Processes and KEGG Signaling Pathways 
Significantly Correlated with DEGs in the Correlation Network

Category Count P

Biology process

 GO:0006260~DNA replication 11 2.18E-06

 GO:00 70268 ~corn ifica tion 9 1.65E-05

 GO:00 31424 ~kera tiniz ation 10 1.78E-04

  GO:0007052~mitotic spindle 
organization

8 2.57E-04

  GO:00 45109 ~inte rmedi ate filament 
organization

5 5.22E-04

 GO:0007059~chromosome segregation 6 8.78E-04

  GO:00 07018 ~micr otubu le-ba sed 
movement

6 1.71E-03

 GO:0042572~retinol metabolic process 5 1.72E-03

 GO:0006281~DNA repair 10 1.77E-03

  GO:0010628~positive regulation of gene 
expression

14 1.90E-03

 GO:0000278~mitotic cell cycle 7 3.10E-03

 GO:0007568~aging 7 1.11E-02

  GO:0030855~epithelial cell 
differentiation

5 1.31E-02

  GO:00 30198 ~extr acell ular matrix 
organization

8 1.49E-02

  GO:0008284~positive regulation of cell 
proliferation

12 1.79E-02

 GO:0006468~protein phosphorylation 11 2.87E-02

  GO:0045892~negative regulation of 
transcription, DNA-templated

12 2.94E-02

 GO:0051301~cell division 9 3.59E-02

  GO:0008285~negative regulation of cell 
proliferation

10 3.81E-02

  GO:0051897~positive regulation of 
protein kinase B signaling

6 4.36E-02

KEGG pathway

 hsa00830:Retinol metabolism 5 4.63E-03

 hsa03440:Homologous recombination 4 7.78E-03

  hsa05150:Staphylococcus aureus 
infection

5 1.53E-02

 hsa04110:Cell cycle 5 3.69E-02

  hsa00051:Fructose and mannose 
metabolism

3 4.26E-02

  hsa04512: extracellular matrix-receptor 
interaction

4 4.58E-02

 hsa04151:PI3K-Akt signaling pathway 8 4.63E-02

 hsa04915:Estrogen signaling pathway 5 4.89E-02
DEGs, differentially expressed genes; GO BP, gene ontology biology process; 
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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recombination and hsa05150:Staphylococcus aureus 
infection, and so on (Table 2).

Construction of Survival Prognosis Model
A total of 16 DEGs were related to prognosis based on the 
204 DEGs in the correlation network using univariate Cox 
regression analysis. We then obtained 9 optimized DEGs 
using the LASSO method. As shown in Figure 3A, when 
the parameter -log(lambda) is −3.501, the lowest mean-
squared error of 0.210 was obtained. At this time, the 
number of corresponding gene variables is 9, and the 9 
genes shown in Figure 3B are the optimal ones, including 
HSD17B3, GNG7, CHAD, ARHGAP8, NOX1, YY2, GOLGA8A, 
DNASE1L3, and ABCA8. Furthermore, we conducted the 
KM survival analysis to study the correlation between the 
expression of 9 optimized DEGs and patients’ prognosis. 
Furthermore, we found that high expression of CHAD, 
GNG7, GOLGA8A, YY2, ARHGAP8, HSD17B3, and NOX1 
was significantly correlated to good survival outcomes. In 
contrast, DNASE1L3 and ABCAB were highly expressed in 
samples with GC leading to poor prognosis.

Besides, we divided the samples into high- or low-risk 
groups according to the RS value. We exhibited the RS dis-
tribution and patients’ survival time in Figure 4A. The ROC 
curves of 1, 3, and 5 years in the UCSC training dataset 

showed good prediction with the area under the curve 
(AUC) of 0.957, 0.937, and 0.929. Also, the ROC curves of 
1, 3, and 5 years in the GSE62254 validation dataset had 
good predictive ability with the AUC of 0.780, 0.940, and 
0.767, respectively (Figure 4B). After that, to validate the 

Figure 2. Screening of differentially expressed genes. (A) Volcano plot, red and blue dots indicate significantly differentially up- and 
downregulated genes, vertical dotted lines indicate FDR < 0.05, and 2 horizontal dotted lines indicate |log2FC|>1. (B) Heatmap showed the 
expression levels of differentially expressed genes in gastric cancer (GC)and normal control samples. The white and black in the lower sample 
represent normal and GC tumor samples, respectively.

A B

Figure 3. The screening of optimized prognostic genes for gastric 
cancer. (A) LASSO parameter map, the place where the horizontal 
and vertical red dotted lines intersect in the figure is the position 
where the optimal parameter is obtained, and the corresponding 
gene at this time is the optimal gene combination. (B) Display of the 
LASSO prognostic coefficients of the optimized differentially 
expressed genes.



Yue et al. Nine-Genes for Predicting Prognosis of GC Patients Turk J Gastroenterol 2024; 35(2): 102-111

107

A B

Figure 4. Evaluation and comparison of the efficacy of risk score prediction model. University of California Santa Cruz training set (A), 
GSE62254 (B) validation set risk score distribution (top panel), survival time status (middle panel), and receiver operating characteristic curve 
graph based on gene prognostic features (bottom panel), the numbers in parentheses indicate the corresponding receiver operating 
characteristic curve specificity and sensitivity.
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predictive ability of the RS model on the prognosis of GC 
patients, we constructed the KM curves. The results indi-
cated that there is an obvious relation between the dif-
ferent risk groups based on the RS model and the actual 
prognosis (Figure 5). In the TCGA dataset, we found that 
lower risk was related to longer survival (Figure 5A), at 
the same time, the same results were obtained in the 
GSE62254 dataset (Figure 5B).

Analysis of Clinical Factors
We compared the clinical information between high-risk 
group and low-risk group using Fisher’s exact test. As 
indicated in Table 1, the results expressed that there was 
a significant difference in the distribution of recurrence 

factors in both high- and low-risk groups (P < 1.82E-03). 
Besides, as shown in Figure 6A, the patients in the low-
risk group had less risk of recurrence than that in the 
high-risk group. And the distribution of RS between dif-
ferent recurrence factor groups was shown in Figure 6B.

We screened 2 independent factors related to progno-
sis including Pathologic M and RS model (Table 3). After 
that, to analyze the relation between clinical elements 
(PathologicM and RS model status) and the patients’ 
survival prognosis, we constructed the nomogram model 
shown in Figure 7A. Besides, the C index of 1, 3, and 5 years 
was 0.824, 0.772, and 0.735, respectively, representing 
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Figure 5. The correlation between grouping and actual prognosis 
information. (A) University of California Santa Cruz training set; 
(B) GSE62254. The blue and red curves represent low- and high-risk 
samples, respectively.
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Figure 6. Analysis of clinical information for different risk grouping. 
(A) The number of different recurrence clinical factors in different 
risk groups. (B) Differences in the distribution of risk score values in 
different recurrence clinical groups.

Table 3. Clinical Characteristics of the Patients

Clinical Characteristics
UCSC 

(n = 91)

Univariable Cox Multivariable Cox

HR 95%CI P HR 95%CI P

Age (years, mean ± SD) 65.98 ± 11.49 1.005 0.976-1.035 7.45E-01 – – –

Gender (male/female) 59/32 0.862 0.449-1.656 6.55E-01 – – –

Pathologic M(M0/M1/-) 80/11 3.429 1.401-8.396 4.12E-03 3.067 1.014-12.83 4.750E-02

Patho logic  N(N0 /N1/N 2/N3/ -) 32/29/14/13/3 1.326 0.981-1.793 7.09E-02 – – –

Patho logic  T(T1 /T2/T 3/T4/ -) 3/36/35/13/4 1.194 0.764-1.867 4.35E-01 – – –

Pathologic stage (I/II/III/IV/-) 17/32/22/13/7 1.716 1.166-2.525 5.45E-03 1.401 0.829-2.370 2.083E-01

Neoplasm histologic grade (G1/G2/G3) 3/31/57 1.113 0.6178-2.005 7.22E-01 – – –

Microsatellite status (MSS/MSI-L/MSI-H) 55/20/15/1 1.167 0.799-1.704 4.22E-01 – – –

Recurrence (Yes/No/-) 21/49/21 1.973 0.925-4.208 7.34E-02 – – –

RS model status (high/low) 45/46 8.314 3.654-18.92 7.04E-09 10.959 4.291-27.99 5.610E-07
CI, confidence interval; HR, hazard ratio; RS, risk score; UCSC, University of California Santa Cruz.
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that the nomogram survival model was consistent with 
the actual situation, indicating that this model exactly 
predicted the survival time of patients (Figure 7B).

DISCUSSION
Studies have found that the composition of gut micro-
biota can not only affect tumor stress but also shape the 
microbiota for tumor survival and the tumor microen-
vironment suitable for growth.32,33 The TCMA database 
has greatly aided in the identification of microbial com-
munities and abundances derived from human tissues 
and organs.17 Existing evidence has illustrated the links 
between gut microbiota and GC.34,35 However, few stud-
ies have indicated the association between the prog-
nosis of GC patients and gut microbiota. In this study, 
9 DEGs related to prognosis were screened that have a 
significant correlation with gut microbiota. Based on the 
9 DEGs, we successfully constructed the RS model that 
could correctly predict the prognosis of GC patients. 

Recently, 16S rRNA sequencing has helped explor-
ing novel biomarkers related to gut microbiota in GC.36 
Numerous studies have indicated that novel biomarkers 

might impact the composition and diversity of stomach 
microbiome in the procession of GC.37-39 In this study, 
we screened 9 prognosis DEGs related to gut microbiota 
including HSD17B3, GNG7, CHAD, ARHGAP8, NOX1, YY2, 
GOLGA8A, DNASE1L3, and ABCA8. Among the 9 DEGs, 
2 genes (ABCA8 and DNASE1L3) were the risk factors 
for GC, the high expression of which might lead to poor 
survival of GC patients. Previous studies have reported 
that the 9 DEGs had the prognostic ability for predicting 
the survival time for GC patients.40,41 A risk model based 
on the 9 DEGs could well predict the prognosis for GC 
patients with an AUC of 0.957. Furthermore, we found 
that lower risk scores were related to better long-term 
survival. 

Moreover, a nomogram consisting of clinical factors and a 
risk model led to an increase in the predictive accuracy of 
GC patients’ prognosis.42 Li et al43 reported that the risk 
signature alone predicted the long-term survival of GC 
patients for 1-, 3-, and 5-year survival with an accuracy 
of 0.644, 0.72, and 0.779, respectively. These results sug-
gested the nomogram predicted the long-term survival 
of GC patients. Our study obtained similar results. In our 
study, we successfully constructed the RS model using 
the 9 DEGs. The 1-, 33, and 5-year AUC value of the RS 
model in the UCSC dataset was above 0.9, suggesting that 
the RS model could correctly predict the prognosis of GC. 
Meanwhile, we also found similar results as in the valida-
tion dataset. Besides, we further analyzed the correlation 
between survival ratio and risk grouping, the results dem-
onstrated that the low-risk group was associated with 
a good survival ratio. All the findings concluded that the 
RS model based on 9 genes has an accurate prediction 
for the prognosis for GC. All these findings indicated that 
the 9 DEGs were involved in constituting GC prognostic 
model. Thus, the 9 DGEs might play an important role in 
predicting the prognosis for GC patients. Further func-
tion experiments (vivo and vitro tests) are necessary to 
be performed for validating the prognostic ability of the 
9 DEGs in the future. By then, the expression of these 9 
DEGs may help predicting prognosis and overall survival 
time for patients with GC in future clinical practice.

There are still some limitations in this study. First of all, 
data samples are mainly from public databases, which are 
limited and single. We will further explore this in multi-
center or multi-data sets. Then, this study had no under-
lying experimental and clinical validation. Therefore, basic 
experiments on DEGs associated with gut microbiota in 
GC will be further carried out in the future, mainly focus-
ing on relevant mechanisms and signaling pathways.

A

B

Figure 7. Construction of nomogram survival model for independent 
prognostic factors. (A) Nomogram plot of the independent 
prognostic factor column chart survival prediction model. (B) A line 
chart showing the consistency between 1-year, 3-year, and 5-year 
survival rate predictions and actual survival rates. The horizontal axis 
represents the predicted survival rate, while the vertical axis 
represents the actual survival rate.
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In conclusion, we found that the 9 DEGs related to gut 
microflora, including HSD17B3, GNG7, CHAD, ARHGAP8, 
NOX1, YY2, GOLGA8A, DNASE1L3, and ABCA8, might be 
associated to prognosis of GC. Both risk signature and 
nomogram constructed using the 9 feature DEGs could 
effectively predict the prognosis for GC patients.
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