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ABSTRACT
Background: Development of a radiomics model for predicting lymph node metastasis status in rectal cancer patients based on 
3-dimensional endoanal rectal ultrasound images.
Methods: This study retrospectively included 79 patients (41 with lymph node metastasis positive and 38 with lymph node metastasis 
negative) diagnosed with rectal cancer in our hospital from January 2018 to February 2022. The tumor’s region of interest is first delin-
eated by radiologists, from which radiomics features are extracted. Radiomics features were then selected by independent samples 
t-test, correlation coefficient analysis between features, and least absolute shrinkage and regression with selection operator. Finally, 
a multilayer neural network model is developed using the selected radiomics features, and nested cross-validation is performed on it. 
These models were validated by assessing their diagnostic performance and comparing the areas under the curve and recall rate curve 
in the test set.
Results: The areas under the curve of radiologist was 0.662 and the F1 score was 0.632. Thirty-four radiomics features were significantly 
associated with lymph node metastasis (P < .05), and 10 features were finally selected for developing multilayer neural network models. 
The areas under the curve of the multilayer neural network models were 0.787, 0.761, 0.853, and the mean areas under the curve was 
0.800. The F1 scores of the multilayer neural network models were 0.738, 0.740, and 0.818, and the mean F1 score was 0.771.
Conclusions: Radiomics models based on 3-dimensional endoanal rectal ultrasound can be used to identify lymph node metastasis 
status in rectal cancer patient with good diagnostic performance.
Keywords: 3-dimensional endoanal rectal ultrasound, radiomic, rectal cancer, lymph node metastasis, nested cross-validation

INTRODUCTION
Among various cancers, colorectal cancer is the third most 
common cancer and the fifth leading cause of cancer-
related death in China.1 A total of 30%-40% of colorec-
tal cancer is rectal cancer (RC). The status of lymph node 
metastasis (LNM) in patients with RC has a vital influ-
ence on local recurrence, overall survival, and whether 
the patients need to undergo neoadjuvant radiotherapy 
(NAT) or chemotherapy.2 However, the current medical 
technology is challenging to accurately predict the LNM 
status of RC patients before surgery. Meta-analysis stud-
ies have shown that even if endoanal rectal ultrasound 
(ERUS), computed tomography (CT), and magnetic reso-
nance imaging (MRI) are used in combination, the clinical 
lymph node staging is not certain.3

Radiomics is a new concept in recent years. Radiomics 
is used to solve clinical problems by extracting features 

from medical images and building machine learning 
models. Since it was proposed in 2012,4 it has played 
an increasingly important role in cancer research. Using 
it can improve the accuracy of cancer diagnosis, prog-
nostic assessment, and metastasis prediction.5 Machine 
learning models developed from radiomics features have 
been widely accepted as reliable tools for predicting clini-
cal events, and has successfully assisted the diagnosis 
of several malignant tumors, preoperative prediction of 
LNM status, and prediction of radiotherapy and chemo-
therapy effects.6-10 Multilayer neural network (MLP) is 
a machine learning model, which belongs to neural net-
work and is a nonlinear statistical classifier.11,12 Multilayer 
neural network has been widely used in the radiomics 
research. Studies have shown that MLP performs well in 
the diagnosis of breast tumors, bladder tumors, and gas-
tric tumors.13-15 It even showed good results in predicting 
the incidence of COVID-19.16
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Three-dimensional endoanal rectal ultrasound (3D-ERUS) 
is a new technology that can automatically obtain vol-
ume data of tissues around the rectum, which can obtain 
more information than traditional 2-dimensional rectal 
ultrasound (2D-ERUS). It shows higher accuracy than 
2D-ERUS or CT in predicting RC staging and LNM status.17

To our knowledge, no study has evaluated whether 
MLP models based on 3D-ERUS radiomics features can 
improve LNM state prediction in RC. Therefore, this study 
aimed to establish a radiomics model for preoperative 
prediction of LNM status in RC patients.

MATERIALS AND METHODS
This study involving human participants were reviewed 
and approved by the Second Affiliated Hospital of 
Guangzhou Medical University. Written informed consent 
for participation was not required for this study in accor-
dance with the national legislation and the institutional 
requirements.

Study Design
The overall design of our study was illustrated in Figure 1, 
including patient recruitment, tumor segmentation and 
feature extraction, model development with nested 
cross-validation, and evaluation of model performance.

Patients
From January 2018 to February 2022, a total of 109 
RC patients who were confirmed through histopa-
thology were retrieved using the Picture Archiving and 
Communication System work station in our institution. 
Our inclusion criteria were as follows: (1) 3D-ERUS was 
performed in the patient prior to surgery; (2) the diag-
nosis of rectum cancer was confirmed through histopa-
thology analysis; (3) the time interval between 3D-ERUS 
and radical RC resection was ˂1 month. Exclusion criteria 

were: (1) the mass belonged to the high RC category and 
were incapable of undergoing 3D-ERUS examination 
(n = 14); (2) the mass was too large to be fully included in 
the ultrasound scan, so the mass could not be completely 
displayed (n = 7); (3) the NAT treatment was performed 
before 3D-ERUS (n = 9). A total of 79 patients diagnosed 
with RC were included in this retrospective study, includ-
ing 41 (51.9%) males and 38 (48.1%) females. Based on 
histopathological examination results, these patients 
were divided into LNM-positive group (stage N1-2) or 
LNM-negative group (stage N0).

Three-Dimensional Endoanal Rectal Ultrasound
The ultrasound equipment used was a BK Pro Focus 2202 
ultrasound system equipped with the 8820 3D intra-anal 
probe. The patient received a cleansing enema 2 hours 
before 3D-ERUS. During the ultrasound examination, 50 
mL of warm Coupland was injected into the patient’s rec-
tum through the anus, then the probe was inserted and 
the tumor was placed in the center of the image, and 
finally the automatic 3D scanning procedure was started. 
All 3D-ERUS are acquired with the following parameters: 
MI 0.86 <1.90, TIS 0.1 <4.0, Res/Hz 2/38 Hz, B Gain 58%, 
DynRange 71 dB, Harmonic off, persist 1, Edge 3, Noise 
Reject 15, ACI On, ETC 3.

Radiologists
Three-dimensional endoanal rectal ultrasound images of 
RC were reviewed by 2 experienced radiologists blinded 
to pathological information to assess LNM status, as 
shown in Figure 2. Any disagreement was resolved by 
consultation.

Image Segmentation
Region of interests were manually drawn on the largest 
transverse section of the tumor by 2 experienced radiolo-
gists using the ITK-SNAP 3.8 software (https​://ww​w.itk​
snap.​org), as shown in Figure 1B. Each disagreement was 
resolved through discussions. Radiologists were blinded 
to clinical information.

Radiomics Feature Extraction
When the 3D-ERUS images segmentation was complete, 
use the python program to perform radiomics analysis.18 
A total of 1694 radiomics features in 8 categories were 
extracted for each patient, including (a) first-order statis-
tics, (b) shape-based (3D), (c) shape-based (2D), (d) gray-
level cooccurrence matrix, (e) gray-level run length matrix, 
(f) gray-level size zone matrix, (g) neighboring gray tone 
difference matrix, and (h) gray-level dependence matrix.

Main Points
•	 For the first time, the value of a multilayer neural network 

model based on the radiomics features of 3-dimensional 
endoanal rectal ultrasound images in the identification 
of lymph node metastases in rectal cancer patients was 
discovered.

•	 Radiomics features based on 3-dimensional endoanal rec-
tal ultrasound images are of great value in the identifica-
tion of lymph node metastases in rectal cancer.

•	 Diagnostic performance of multilayer neural network 
models based on radiomics features is higher than that of 
radiologists.

https://www.itksnap.org
https://www.itksnap.org
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Figure 1.  The overview of the study design. (A) Patient recruitment. (B) Tumor segmentation and feature extraction. Manually map the 
region of interest (ROI) on the largest section of the tumor’s coronal plane. Radiomics features were extracted from ROI masks. (C) Model 

development with nested cross-validation. Nested cross-validation comprise an inner and outer loop. The inner loop included 
hyperparameter tuning. The outer loop was performed for the evaluation of model performance. (D) Evaluation of model performance. 

Receiver operating curve and precision recall curve (P–R curve) analysis were used for model performance evaluation.
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Figure 2.  Patient with RC was pathologically confirmed as a representative case of positive LNM. The above-mentioned images are 
3D-ERUS scan images, which are 3-dimensional, perspective, sagittal, coronal, cross-sectional, and 3-dimensional sectional views. The red 

arrow in (A) shows the area of the rectal tumor, and the yellow arrow in (B) shows the lymph nodes around the rectum. 3D-ERUS, 
3-dimensional endoanal rectal ultrasound; LNM, lymph node metastasis; RC, rectal cancer.
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Feature Normalization
After feature extraction, the value range of some features 
is quite different, some ranging from 0 to 10, and some 
ranging from 0 to 1000. However, we cannot directly 
assume that features with larger values have greater 
value to the model. Thus, we normalize values of differ-
ent features so that all values fall into the same numeric 
interval.19

Radiomics Feature Selection
Due to the very high dimensionality of radiomics features 
(n = 1694) compared to the sample size of the study 
cohort (n = 79), feature selection was necessary to avoid 
overfitting. To reduce dimensionality, we design a 3-step 
feature screening procedure. First, use Student’s t-test 
to remove redundant features with small differences. 
Second, perform correlation analysis on the features. 
From this step, highly correlated features with correla-
tions above 0.80 are removed. Finally, the least absolute 
shrinkage and selection operator (LASSO) method is 
applied for feature screening.

Model Development
We have developed a preliminary deep learning model, 
an MLP. Grid-search cross-validation (Grid-search CV) is 
used for hyperparameter selection during model build-
ing.18 It is worth noting that in order to avoid the model 
being too complex, we limit the number of hidden layers 
of the MLP model to less than 5 layers in Grid-search CV.

Nested Cross-Validation
Due to the small sample size of this study, it is easy to 
cause deviations between the research results and the 
actual situation. Therefore, this study uses 3*3 nested 
cross-validation to validate the model results.20,21 Nested 
cross-validation contains outer loop and inner loop. In the 
outer loop, the total sample is split into an outer training 
set and an outer test set. In the inner loop, the outer train-
ing set is split into an inner training set and an inner vali-
dation set. The inner loop performs model training on the 
inner training set, and performs preliminary verification 
with the inner validation set. The inner loop is performed 
3 times, the model hyperparameters are set according 
to the best validation result. In the outer loop, the model 
is finally validated using the outer test set and the AUC 
and F1-score are calculated. The outer loop is performed 
3 times to obtain 3 MLP models, and the average AUC 
value and F1-score are calculated according to the final 
validation results.

Statistical Analyses
Feature standardization, selection, and model develop-
ing were performed using the Python 3.8.5 (https​://ww​
w.pyt​hon.o​rg/). The “scikitlearn” (https​://sc​ikit-​learn​.org/) 
and “matplotlib” (https​://ma​tplot​lib.o​rg/) packages were 
used in this study. Statistical analysis of clinical infor-
mation was performed using the Statistical Package for 
Social Sciences version 22.0 software (IBM Corp.; Armonk, 
NY, USA). Independent samples t-test and chi-square 
test were used to compare the differences in age, gen-
der, histological T/N stage, pathological differentiation, 
morphology, and histological-type distribution between 
LNM-positive and -negative groups. Areas under the curve 
values and F1 scores were used to evaluate the diagnos-
tic performance of deep learning classifiers. P <  .05 was 
considered a statistically significant difference.

RESULTS
Clinical Characteristics
In this study, 79 patients with RC were finally included, 
and they were divided into LNM positive group (41 cases) 
and LNM-negative group (38 cases) according to the LNM 
status of pathological diagnosis. The clinical data of the 
2 groups are shown in Table 1. Among them, the lymph 
node status reported by the radiologist and pathological T 
stage were significantly different (P < .05).

Radiologists
Among the 79 patients, radiologist correctly diagnosed 29 
lymph node-positive patients and 23 lymph node-nega-
tive patients. The AUC is 0.662, the F1-score is 0.632, the 
specificity is 0.763, the sensitivity is 0.561, and the accu-
racy is 65.8%.

Radiomics Feature Extraction and Selection
In the 3D-ERUS images, we extracted a total of 8 catego-
ries and 1694 radiomics features. Our results showed that 
34 radiomics features were significantly associated with 
LNM status (P < .05) (Figure 3A and B). After the 3-step 
procedure, 10 features were finally selected for develop-
ing the radiomics model (Figure 3B and D).

Diagnostic Performance of Radiomics Models
The 3*3 nested cross-validation results are shown in 
Table 2. The AUCs of the 3 MLP models are 0.780, 0.761, 
and 0.853, and the average AUC is 0.798. The F1 scores 
of the 3 MLP models are 0.738, 0.740, and 0.818, and 
the average F1-score is 0.771 (Figure 4A and B). The 
nested cross-validation results show that the diagnostic 

https://www.python.org/
https://www.python.org/
https://scikit-learn.org/
https://matplotlib.org/


Li et al. Ultrasound Radiomics Model of Rectal Cancer Turk J Gastroenterol 2023; 34(5): 542-551

547

performance of the MLP model is higher than that of 
radiologists.

DISCUSSION
This study aimed to develop a 3D-ERUS image-based 
radiomics model to predict LNM status in RC patients. 
In 3*3 nested cross-validation, the mean AUCs and F1 
scores of the MLP models are higher than that of radiolo-
gists, showing good effect in predicting LNM status in RC 
patients.

The LNM status in RC patients has a vital influence on 
local recurrence, overall survival, and whether patients 
need to undergo NAT. The LNM status of RC patients is a 
reference indicator for deciding whether to perform NAT. 
For patients with advanced RC, surgical resection after 
NAT treatment could reduce the risk of local recurrence 
by 50%-61% compared to surgery alone.22 Therefore, 
accurate preoperative assessment of LNM status is cru-
cial for optimizing treatment regimens and prognostic 
prediction. However, it remains a challenge to assess LNM 
status before surgery. 

In this study, radiologists had poor results in predicting 
LNM status in RC patients using 3D-ERUS images (AUC = 

Table 1.  Comparison of Clinical Data of Patients with LNM-
Positive and -Negative Groups

Negative Group 
(n = 38)

Positive Group 
(n = 41) P

Age 63.63 ± 9.55 62.20 ± 14.96 .610
Gender
  Male 20 (52.6%) 21 (51.2%) .900
  Female 18 (47.4%) 20 (48.8%)
BMI 22.50 ± 3.25 22.33 ± 2.37 .787
CEA 3.24 (3.47) 5.84 (9.93) .077
Ca 19-9 8.37 (11.95) 9.00 (12.29) .898
Tumor size (cm3) 3.52 (3.15) 3.28 (2.56) .517
Echo
  Hypo echo 10 (26.3%) 18 (43.9%) .122
  Medium echo 16 (42.1%) 17 (41.5%)
  Hyper echo 12 (31.6%) 6 (14.6%)
Border
  Smooth 0 (0.0%) 0 (0.0%)
  Hazy 38 (100.0%) 41 (100.0%)
Blood flow
  Stage 0 0 (0.0%) 0 (0.0%) .063
  Stage 1 14 (36.8%) 11 (26.8%)
  Stage 2 10 (26.4%) 20 (48.8%)
  Stage 3 14 (36.8%) 10 (24.4%)
T stage of tumor 
reported by ultrasound
  uT1 2 (5.3%) 0 (0.0%) .641
  uT2 2 (5.3%) 3 (7.3%)
  uT3 28 (73.7%) 30 (73.2%)
  uT4 6 (15.8%) 8 (19.5%)
Lymph node status 
reported by ultrasound
  uN0 29 (76.3%) 18 (43.9%) .006
  uN1 9 (23.7%) 23 (56.1%)
Boundary with 
surrounding organs
  Clear 32 (84.2%) 34 (82.9%) 1.000
  Not clear 6 (15.8%) 7 (17.1%)
Artery Vmax (cm/s) 13.9 (8.11) 14.57 (13.32) .887
Artery RI 0.71 (0.95) 0.69 (0.17) .933
Pathological T staging
  T1 2 (5.3%) 0 (0.0%) <.001
  T2 19 (50.0%) 4 (9.8%)
  T3 12 (31.6%) 21 (51.2%)
  T4 5 (13.2%) 16 (39.0%)

Negative Group 
(n = 38)

Positive Group 
(n = 41) P

Tumor differentiation
  Well differentiated 0 (0.0%) 6 (14.6%) .087
 � Moderate to well 

differentiated
29 (76.3%) 26 (63.4%)

 � Moderate 
differentiation

4 (10.5%) 3 (7.3%)

  Poorly differentiated 5 (13.2%) 6 (14.6%)
Tumor appearance
  Polyp type 22 (57.9%) 17 (41.5%) .263
  Ulcer type 12 (31.6%) 20 (48.8%)
  Flat type 3 (7.9%) 4 (9.8%)
  Sessile type 1 (2.6%) 0 (0.0%)
Histological type
  Adenocarcinoma 34 (89.5%) 33 (80.5%) .457
 � Mucinous 

adenocarcinoma
4 (10.5%) 6 (14.6%)

 � Signet ring cell car-
cinoma

0 (0.0%) 2 (4.9%)

BMI, body mass index; CEA,carcinoembryonic antigen; Ca199, Carbohydrate 
antigen199; LNM, lymph node metastasis.

Table 1.  Comparison of Clinical Data of Patients with LNM-
Positive and -Negative Groups (Continued)

(Continued)
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0.662), which was consistent with previous studies.3 This 
may bring wrong information to clinicians, leading to the 
wrong choice of treatment options.

Radiomics can extract information from images to detect 
differences that cannot be detected by visual inspec-
tion.4,5 Previous studies have predicted the LNM status 

Figure 3.  (A) Heat map of the selected features of radiomics classifiers for differentiating between LNM positive and negative. (B) Heat 
map for correlation analysis of radiomics features. (C) Selection of LNM-associated radiomics features using the LASSO regression. In 
10-fold cross-validation, the model has the lowest mean-squared error when the lambda value is 0.02848035868435802. (D) When 

entering the optimal lambda value, the redundant feature coefficient is returned to 0, and 10 nonzero features are retained. LASSO, least 
absolute shrinkage and selection operator; LNM, lymph node metastasis.
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of RC patients based on the imaging characteristics of 
2D-ERUS, CT, and MRI.8,23-27 The AUC of the nomogram 
model based on radiomics features for predicting LNM 
status in RC patients was 0.77, 95% CI 0.67-0.86.28 
A nomogram model was constructed by combining ERUS, 
CT, and shear wave elastography images for predicting 
LNM status in RC patients with a concordance index of 
0.857.24 However, previous research results have only 
performed single-pass validation or single-layer cross-
validation, and the results are highly dependent on the 
division of test sets. Nested cross-validation can avoid 
this problem, especially when making analytical decisions 
or adjusting model parameters after observing analyti-
cal results, which may produce overestimated results.29 
Nested cross-validation is widely used in machine learning 
and deep learning.20,30-32 Compared with a simple cross-
validation, nested cross-validation can reduce overfit-
ting and limit optimism bias. Especially in relatively small 
samples, nested cross-validation procedure provides an 

almost unbiased estimate of the true error.29,33 Therefore, 
this study developed an MLP model to predict LNM status 
in RC patients and performed 3*3 nested cross-validation 
to validate the model’s diagnostic performance.

In this study, 1694 radiomics features were extracted 
from 3D-ERUS images of patients with RC. To avoid 
model overfitting, 1684 (99.4%) were eliminated using 
independent sample t-test, feature correlation coeffi-
cient analysis, and LASSO regression analysis, and only 10 
best features were finally preserved. For a large number of 
radiomics features extracted from a relatively small sam-
ple, LASSO regression analysis can avoid model overfit-
ting.34 Based on the above 10 best features, we built the 
MLP model. The MLP model is a preliminary deep learning 
model and nonlinear classifier. It contains multiple hidden 
layers, and each hidden layer contains multiple neurons. 
With the cooperation of multiple neurons, it can show 
the complex relationship between dependent variables 
and independent variables.11,12 The MLP models have 
been effectively applied to the diagnosis of liver cancer 
and breast cancer, to predict LNM status in breast cancer 
patients, and to assess the risk of cardiovascular disease 
in patients.35-37 It is worth noting that the increase of hid-
den layers will also increase the complexity of the model. 
Studies have shown that an overly complex model can 
easily lead to overfitting and reduce the performance of 

Table 2.  Area Under the Curve Value of Radiomics Model in 
Nested Cross-Validation

Loop 1 Loop 2 Loop 3 Mean

Training set 0.835 1.000 0.975 0.937

Validation set 0.773 0.832 0.797 0.801

Test set 0.780 0.761 0.853 0.798

Figure 4.  (A) The receiver operating characteristic curve in the prediction of RC LNM. (B) P–R curve in the prediction of RC LNM. LNM, 
lymph node metastasis; RC, rectal cancer.
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the model for unfamiliar objects. To avoid this situation, 
this study used grid-search CV to optimize the model 
hyperparameters while limiting the number of hidden lay-
ers in the model.

In order to verify the actual effect of the model applied 
to the clinic, the model was validated. Due to the small 
sample size of this study, it is easy to cause model over-
fitting. In layman’s terms, overfitting means that an arti-
ficial intelligence (AI) model learns in a way that is only 
applicable to training samples, and no longer generalizes 
to the entire population.29,38 This means that the model 
has extremely high performance on the training set and 
extremely low performance on the validation and test 
sets. Therefore, this study uses 3*3 nested cross-valida-
tion to verify the model results. The 3*3 nested cross-val-
idation results of the MLP models show that the 3 models 
have better performance on the test set and validation 
set, respectively. The diagnostic performance of the test 
set and validation set is lower than that of the training 
set, but the gap is within an acceptable range. It is worth 
noting that for each model, the validation and test sets 
are external datasets, which indicates that the model has 
a low degree of overfitting. Based on the mean AUC and 
mean F1-score, the MLP models showed good diagnos-
tic performance in multiple validations, and all were larger 
than the radiologist’s AUC, showing good reliability and 
repeatability.

Nevertheless, our study has several limitations: First, our 
relatively small sample size may cause unstable results, 
even if we use nested cross-validation. Second, this study 
lacks multi-institution verification of radiomics char-
acteristics. Finally, instead of 3D analysis of the entire 
lesion volume, we performed a 2D analysis of the region 
of interest in the largest slice of the lesion cross-section. 
This method is less labor intensive but less sensitive to 
intertumoral changes.

CONCLUSION
In conclusion, the radiomics features based on 3D-ERUS 
images are of great value for identifying the LNM status of 
RC patients, and the diagnostic performance of the MLP 
models constructed based on it are better than that of 
radiologists. Multicenter retrospective validation and pro-
spective randomized clinical trials should be performed in 
subsequent studies to obtain high-level evidence for the 
clinical application of this radiomics model.
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