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ABSTRACT
Autophagy is a key biological phenomenon conserved from yeast to mammals. Under basal conditions, activation of autophagy leads 
to the protein degradation as well as damaged organelles for maintaining cellular homeostasis. Deregulation of autophagy has been 
identified as a key mechanism contributing to the pathogenesis and progression of several liver diseases, including hepatocellular car-
cinoma (HCC), one of the most common and mortal types of cancer. Currently used treatment strategies in patients with HCC result in 
variable success rates. Therefore, novel early diagnosis and treatment techniques should be developed. Manipulation of autophagy may 
improve responses of cancer cell to treatments and provide novel targeted therapy options for HCC. In this review, we summarized how 
our understanding of autophagy-cell death connection may have an impact on HCC therapy.
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INTRODUCTION
Autophagy is a catabolic response of cells to stress. During 
this process, cargo is delivered to the lysosomes for deg-
radation, supporting new building block synthesis and al-
lowing cells to maintain homeostasis. Autophagy is active 
at a basal level in cells, and it may further be upregulated 
in response to several types of stresses that disturb cellu-
lar homeostasis, including low cellular ATP levels, nutrient 
and growth factor deprivation, hypoxic conditions, en-
doplasmic reticulum (ER) stress, pathogen entry, or anti-
cancer drug treatment (1). Autophagy products feed into 
cellular energy-generation pathways, facilitating cell sur-
vival under stressful conditions. In contrast, overactiva-
tion of autophagy may indeed lead to cell death through 
so far not well understood mechanisms as an alternative 
nonapoptotic programmed cell death mechanism, “auto-
phagic cell death” has been reported to be responsible for 
killing cells in a number of scenarios (2-4).

Abnormalities related to autophagy are known to be re-
lated to various human pathologies ranging from neuro-
degenerative diseases to cancer, including hepatocellu-
lar carcinoma (HCC) (5). Moreover, autophagy has been 
described as one of the central pathways for liver health 
and disease. In starved animals, a grand majority of total 
protein and glycogen degradation in the liver depends on 
autophagic degradation (6). On the other hand, autophagy 
is related to several liver diseases, including fatty liver dis-

ease and HCC (7,8). For instance, blockage of autophagy 
and autophagolysosomal degradation in mice using genet-
ic tools resulted in hepatosteatosis and hepatomegaly (9).

The role of autophagy in cancer-related processes is 
currently under investigation. Yet, a picture started to 
emerge. A number of studies showed that during tran-
sitions from normal cells to cancer cells, autophagy ei-
ther plays a tumor-suppressor role or prevents cancer 
formation. In contrast, exploitation of autophagy to deal 
with hypoxia and energy crisis may allow fast-growing 
and poorly-vascularized tumors to survive and expand. 
Therefore, a comprehensive understanding of autopha-
gy pathways that are operational in HCCs may be most 
rewarding, allowing development of new diagnosis and 
treatment techniques. In this review, we will briefly intro-
duce the basic autophagic machinery and autophagy-cell 
death connections and summarize implication of auto-
phagy-related cell death and survival for HCC manage-
ment.

Autophagy mechanisms
The basic autophagy mechanism is conserved from yeast 
to man. It is tightly regulated by almost 40 different ATG 
(Autophagy) genes. Following the initial description of 
the pathway in the yeast, function of ATG genes and 
their products were studied under several physiological 
and pathological conditions.
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Autophagosome (or autophagic vesicle) and autolyso-
some formation is a result of well-studied sequential 
stages, including induction, vesicle nucleation, lysosome 
fusion, and degradation. Here we will briefly overview 
autophagosome formation stages and the role of major 
proteins involved in the machinery (Figure 1). Autophago-
somal membrane lipids that are contributing to de novo 
autophagosome membrane synthesis appear to originate 
from various pre-existing membrane structures, such as 
plasma membrane, ER, or mitochondrial membranes (10).

The most important upstream regulators of autophagy are 
the mammalian target of rapamycin complexes (mTORC1 
and 2). A central serine/threonine kinase, the mTOR kinase, 
is the essential component of both mTOR protein com-
plexes. These protein complexes play key roles in the reg-
ulation of cellular growth, cell-cycle progression, cell mi-
gration, and protein synthesis as well as the coordination 
of the catabolic autophagy activation with the activity of 
these essential cellular anabolic pathways.

When the growth conditions are favorable, mTOR complex-
es are active and the autophagic machinery is shut down. 

mTORC1 regulates the downstream Atg1/Ulk1 autopha-
gy-related kinase complex (11). Under nutrient-rich condi-
tions, mTOR phosphorylates ATG13 and ULK1/2, and their 
activity is inversely correlated with FIP200 phosphorylation. 
On the other hand, under nutrient deprivation, mTOR tar-
gets are dephosphorylated and ATG13 binds to ULK1/2 and 
FIP200. Then, ULK1/2 phosphorylates FIP200 and FIP200-
ULK1-ATG13 complex (12). Hence, activated Atg1/ULK1 
complex regulates the activity of a second complex named 
as class-III phosphatidylinositol 3-kinase (PI3K) complex, 
which contains the lipid kinase Vps34. The PI3K complex 
consists of Vps34, Vps15, Atg6, and Atg14 in the yeast. The 
mammalian counterparts of this complex include Beclin 1 
(BECN1), ATG14L (Barkor), AMBRA1, hVps34, and p150 
(13). Formation of phosphatidylinositol 3-phosphate (PI3P) 
molecules on cellular membranes creates a landing pad for 
the recruitment of other proteins and complexes that are 
required for autophagosome formation (1).

During the autophagosome membrane elongation step, 
two ubiquitination-like conjugation systems, namely 
ATG12-5-16L1 and ATG8 systems, are required. In the 
first conjugation system, ATG12 is conjugated to ATG5 

Figure 1. Schematic representation of the autophagosome formation stages and major proteins and complexes involved in the process
1: Upstream effectors; 2: ULK complex; 3: PI3K complex; 4: ATG5-12-16 complex; 5: LC3 lipidation
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by the help of ATG7 (E1-like enzyme) and ATG10 (E2-like 
enzyme) proteins. Covalent conjugation of ATG12 to the 
lysine 130 residue (K130) of ATG5 is followed by the ad-
dition of ATG16L protein to the complex. Oligomerization 
of ATG16L proteins results in the formation of an auto-
phagy-related 800-kDa protein complex (11). ATG12-5-
16L1 complexes possess an E3-like enzyme activity that 
is required for the second ubiquitination-like conjugation 
system. The second system involves the conjugation of 
ATG8/LC3 to a lipid molecule, generally to a phosphati-
dylethanolamine (PE). After cleavage of the carboxyl-ter-
minus of LC3 protein by Atg4 cysteine proteases, a gly-
cine residue is exposed. In this form, the LC3 protein is 
called LC3-I, a free cytosolic form of the protein.

Then, LC3-I is conjugated to a PE by the help of ATG7 
and ATG3 E2-like enzymes, resulting in the appearance 
of a membrane-bound autophagic LC3-II form. Of note, 
the LC3-II form is associated with mature autophago-
somes, and it is commonly used as a marker of autopha-
gy, and it represents the number and distribution of auto-
phagosomes during autophagic activity analyses. ATG18/
WIPI proteins are other important players in autophago-
some formation. ATG18/WIPI proteins are WD-repeat 
containing proteins that are able to recognize PI3P at the 
nascent autophagosome and they regulate autophagic 
activity through recruitment of two ubiquitin-like recruit-
ment systems. In the yeast, ATG2 protein interacts with 
ATG18, this interaction was shown to be important for 
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Figure 2. Tumor-promoter roles of autophagy in HCC
HCC: hepatocellular carcinoma

Figure 3. Tumor-suppressor roles of autophagy in HCC
HCC: hepatocellular carcinoma



the membrane localization of ATG18 and elongation of 
autophagosome membranes. Studies in mammalian cells 
have also underlined the importance of WIPI proteins for 
autophagy. ATG9, a multi-pass transmembrane protein 
localized to late endosomes and the trans-Golgi network, 
is involved in the transport of membranes to forming 
autophagosomes. After completion and closure of auto-
phagic vesicles, the last stage involves their fusion with 
late endosomes or lysosomes. Several membrane fusion 
events connect these two distinct compartments. and 
RAB proteins, SNAP receptor machinery, and dynein-me-
diated transport of autophagosomes along the microtu-
bules are required for the fusion process to occur. Finally, 
the cargo inside the autophagosome is delivered to the 
lysosomal lumen and degraded by the action of hydrolytic 
enzymes in this compartment.

Initially, autophagy was described as a nonselective deg-
radation pathway (14). However, recent studies showed 
that different autophagy receptors that are capable of 
recognizing specific cargo targets were identified, under-
lining the fact that autophagy may be selective (15,16). 
Autophagy receptors include SQSTM1/p62, NBR1, 
NDP52 (also known as a CALCOCO2), OPTN, and NIX 
(also known as BNIP3L) (17-21). Some of these recep-
tors are able to bind and ubiquitinate targets. Moreover, 
several receptors share motifs called LIR (LC3-interact-
ing region), allowing bridging between LC3 on the auto-
phagosomes selective autophagy targets. Because au-
tophagy receptors are also delivered to autolysosomes 
together with the cargo, their cellular levels are generally 
downregulated following autophagy activation. Hence, 
degradation of autophagy receptors is also another com-
monly used marker of autophagic activity.

Autophagy in hepatocellular carcinoma
The role of autophagy in cancer is complex [see (22) for 
a comprehensive review of the topic]. There is experi-
mental evidence that in early phases of cancer formation, 
autophagy functions as an anticancer pathway, prevent-
ing malignant transformation of normal cells to cancer 
cells. On the other hand, autophagy is involved in various 
stages of cancer progression and metastasis. Especially, 
survival of fast-growing tumors has been correlated with 
their autophagic activity. A large collection of articles im-
plicating autophagy in drug resistance exist as well. Here, 
we will summarize the role of autophagy in the context 
of liver cancer.

Liver cancer formation has been observed in a number 
of autophagy mice models. ATG6/BECN1 (Beclin 1) is a 

key gene in the autophagy pathway. BECN1 deletion is 
observed in 40%-75% human cancers (23,24). Inter-
estingly, a heterozygous deletion of atg6/becn1 in mice 
resulted in increased tumorigenesis in multiple tissues, 
including the liver (23,24). Moreover, becn1 deletion ac-
celerated hepatitis B virus (HBV)-related HCCs, under-
lining the importance of atg6/becn1 gene in liver cancer 
formation (23). Deletion of other autophagy genes, such 
as atg5 and atg7, leads to the formation of benign liv-
er adenomas in mice models (25). In addition, liver-spe-
cific atg7 deletion results in hepatomegaly and hepatic 
failure, underlining the role of autophagy in liver homeo-
stasis, disturbance of which may be the cause of HCC. 
Strikingly, additional p62 deletion in a liver-specific atg7 
deficient background alleviated tumor burden, indicating 
that an important role of autophagy in this context is to 
eliminate cellular protein aggregates in a p62-dependent 
manner (26). Similarly, deletion of autophagy-related 
genes Uvrag enhanced susceptibility to HCC develop-
ment in mice (27,28). Therefore, an important role of 
autophagy-related proteins and the autophagy pathway 
in liver cells is the preservation of liver homeostasis and 
prevention of HCC development (Figure 2).

Cancer-preventing effects of autophagy may be related to 
its role in clearing damaged mitochondria, elimination of 
abnormal and mutant proteins and protein aggregates, and 
specific elimination of proliferation-related proteins (5,29). 
Disturbances in autophagic activity result in higher levels 
of reactive oxygen species (ROS) and increase their sus-
ceptibility to DNA damage and genomic instability (30,31). 
First, damaged mitochondria and accumulation of protein 
aggregates boost ROS burden in cells. Moreover, other au-
tophagy-related antioxidant mechanisms exist as well. For 
example, activation of NRF2, a key transcription factor in 
antioxidant defense, has been found to be regulated by 
autophagy (32). Under normal conditions, Keap1, an adap-
tor protein of Cullin-3 ubiquitin ligase, allows ubiquitina-
tion and degradation of NRF2. ROS accumulation results 
in the oxidation of Keap1 and its dissociation from NRF2, 
leading to its stabilization and nuclear migration. Another 
mechanism of Keap1 elimination is selective autophagy. 
Competitive binding of the autophagy receptor p62 to 
Keap1 followed by their selective autophagic degradation 
activates NRF2, triggering an antioxidant transcriptional 
pathway. p62 accumulation has been found to drive liver 
cancer formation in a number of mice models (25,33,34).

In contrast, autophagy is described as an important 
mechanism for cancer progression in established ma-
lignancies (Figure 3). For example, basal autophagy is 
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		  Autophagy	 Autophagy effect 
	 Therapeutics	 status	 on chemotherapy	 Tested cell lines	 Reference

Conventional	 Oxaliplatin	 Increase	 Chemoresistance	 Huh-7 SMMC-7721	 (52)

chemotherapeutics	 Oxaliplatin	 Increase	 Chemoresistance	 HepG2	 (51)

	 Adriamycin	 Increase	 Chemoresistance	 HepG2	 (56)

	 Cisplatin	 Increase	 Chemoresistance	 SMMC-7721	  
				    Hep3B 	 (53) 
				    HepG2	

	 5-FU	 Increase	 Chemoresistance	 SMMC-7721  
				    Hep3B 	 (53) 
				    HepG2	

	 Epirubicin	 Increase	 Chemoresistance	 HA22T/VGH	 (54)

	 Pemetrexed	 Increase	 Chemoresistance	 HepG2	 (55)

Small molecules	 Sorafenib	 Increase	 Chemoresistance	 PLC/PRF/5  
				    Hep3B 	 (63) 
				    HepG2	

	 Sorafenib	 Increase	 Chemosensitivity	 Sk-Hep-1  
				    PLC/PRF/5 	 (65) 
				    Hep3B HepG2	

	 Panobinostat	 Decrease	 Chemosensitivity	 Hep3B  
				    HepG2	 (64) 
				    Huh-7	

	 Bevacizumab	 Increase	 Chemoresistance	 SMMC-7721  
				    Hep3B	

(68)

	 Linifanib	 Increase	 Chemoresistance	 HepG2  
				    Bel-7404	

(69)

	 SC-2001 	 Increase	 Chemosensitivity	 Sk-Hep-1  
				    PLC/PRF/5  
				    Hep3B 	

(73)
 

				    HepG2	

	 ABT-737	 Increase	 Chemoresistance	 Huh-7  
				    PLC/PRF/5  
				    Hep3B 	

(70)
 

				    HepG2	

	 Salinomycin	 Increase	 Chemosensitivity	 HepG2	 (71)

Natural products	 Baicalin	 Increase	 Chemosensitivity	 SMMC-7721	 (74)

	 Galangin	 Increase	 Chemosensitivity	 HepG2	 (75)

	 Cannabinoids	 Increase	 Chemoresistance	 HepG2  
				    Huh-7	 (76)

	 Berberine	 Increase	 Chemosensitivity	 SMMC-7721  
				    HepG2	 (77)

	 Allicin	 Increase	 Chemosensitivity	 HepG2  
				    Hep3B	 (78)

	 Matrine	 Increase	 Chemosensitivity	 HepG2  
				    Bel-7402	 (79)

	 Glycyrrhetinic acid	 Increase	 Chemosensitivity	 HepG2  
				    Hep3B	

(80)

Table 1. Autophagy modulating therapeutics in HCC
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	 SCB	 Increase	 Chemosensitivity	 Hep3B ML-1	 (81)

	 20(S)- 	 Decrease	 Chemosensitivity	 Sk-Hep-1  
	 Ginsenoside Rg3			   HepG2	 (82)

	 Arenobufagin	 Increase	 Chemoresistance	 HepG2	 (83)

	 Bufalin	 Increase	 Chemoresistance	 Huh-7  
				    HepG2 LO2	 (84)

Noncoding RNAs	 miR-199a-5p	 Decrease	 Chemoresistance	 Huh-7  
				    HepG2 	 (86)

	 miR-375 	 Decrease	 Chemoresistance	 Huh-7  
				    Hep3B 	 (87)

	 miR-101 	 Decrease	 Chemosensitivity	 HepG2  
				    HepG2  
				    Hep3B  
				    SNU-182 	 (90,91) 
				    Huh-7  
				    PLC/PRF/5  
				    HepaRG	

	 miR-21	 Decrease	 Chemoresistance	 HepG2  
				    Huh-7	 (92)

	 PTENP1	 Increase	 Chemoresistance	 Mahlavu	 (94)

Other therapies	 NVP-BEZ235 	 Increase	 Chemoresistance	 Hep3B  
				    PLC/PRF/5	

(97)

	 MK-2206	 Decrease	 Chemosensitivity	 Mahlavu  
				    PLC SNU387 
				    SNU449 	 (98) 
				    SNU475	

	 GD0068	 Decrease	 Chemosensitivity	 HepG2  
				    Huh-7	 (99)

	 OSU-03012 	 Increase	 Chemoresistance	 Huh-7	 (101)

	 Meloxicam 	 Increase	 Chemoresistance	 HepG2  
				    Bel 7402  
				    Huh-7 	 (103) 
				    SMMC-7721  
				    SMMC 7402	

	 SAHA	 Increase	 Chemoresistance	 HepG2  
				    Hep3B  
				    Huh-7	 (105)

	 Radiotherapy	 Increase	 N.D.	 Sk-Hep-1 	 (107)

	 Radiotherapy	 Increase	 Chemoresistance	 Sk-Hep-1 	 (108)

	 ADI-PEG20 	 Increase	 Chemoresistance	 HepG2  
				     SMMC-7721	 (109)

	 CD133/ 	 Increase	 Chemoresistance	 HepG2 LO2  
	 Prominin-1			   Hep3B 	 (94) 
				    Huh-7	

HCC: hepatocellular carcinoma; ND: not determined

Table 1. Autophagy modulating therapeutics in HCC (Continue)

		  Autophagy	 Autophagy effect 
	 Therapeutics	 status	 on chemotherapy	 Tested cell lines	 Reference



elevated in hypoxic regions of some solid tumor types 
and found to be an essential role for tumor cell survival 
in experimental models (35). Tumor neovascularization 
may not always result in a homogenous vessel network, 
and especially in fast-growing tumors, regions that have 
limited access to nutrients and oxygen exist (36). Thus, 
cancer cells in these regions may be more dependent on 
autophagy than normal-growing cells. Indeed, autophagy 
has been shown to promote HCC growth in experimen-
tal studies (37-39). Autophagy is also believed to support 
the survival of cancer cells and contribute to metastasis 
and chemotherapy resistance.

In summary, although autophagy may act as an antitumor 
pathway preventing early stages of cancer development 
in established tumors, it may protect cancer cells from 
various stress conditions, including starvation, oxidative 
stress, hypoxia, and chemotherapy, and it may contribute 
to the growth and spread of cancerous cells (13,40)

Autophagy and cell death
Autophagy is generally considered as a stress response 
and a cell-survival mechanism. It is frequently observed 
that dying cells exhibit autophagy activation. Wheth-
er this autophagic activity is a failing attempt to rescue 
stressed cells or conversely contributes to cell death is 
a matter of scientific debate. Yet under certain condi-
tions, blockage of autophagy using chemicals or genetic 
tools may rescue cells from death. Moreover, autophagy 
activation is observed in a number of necrotic-like pro-
grammed cell death types, including necroptosis and au-
tosis; however, the contribution of autophagy to these 
novel death pathways has not been thoroughly analyzed 
(41). Nevertheless, several independent articles showed 
the existence of a nonapoptotic cell death type that de-
pended on autophagic activity (2,42-46).

In the context of cancer, autophagic cell death is shown 
to limit clonogenic survival. For example, H-ras, one of 
the most commonly mutated proteins in various can-
cers, is found to increase cellular levels of the autopha-
gy protein Beclin 1 and induce caspase-independent cell 
death with autophagic characteristics (42). In multiple 
myelomas, cleavage of autophagic cell death inducer 
BCLAF1 by caspase-10 is required for cancer cell sur-
vival (43). In addition, several tumor-suppressor-related 
and cell-death-related proteins, including DAPK, DRP1, 
ZIP, p19ARF, and GBA, triggered autophagic cell death 
(2,45-48). Therefore, although autophagy allows cells to 
survive stressful conditions that cancer cells are facing 
during various stages of cancer, excessive autophagy and 

autophagic cell death may kill cancer cells and limit their 
progression and metastasis.

Autophagy and hepatocellular carcinoma therapy
Hepatocellular carcinoma is one of the most common 
cancer types. It is the third leading cause of cancer deaths 
worldwide (49). History of chronic liver disease and cir-
rhosis is among the factors that predispose patients to 
HCC development. Understanding the molecular mecha-
nisms of HCC development and the contribution of auto-
phagy deregulation to these mechanisms are among im-
portant challenges of modern medicine. Therefore, in this 
section, we will summarize preclinical and clinical studies 
that focused on autophagy in an HCC treatment context 
(Table 1).

Conventional chemotherapeutics
Chemotherapeutic agents were shown to activate auto-
phagy in a number of cancer types. Oxaliplatin is a plat-
inum-based chemotherapy agent that is widely used in 
the treatment of HCC (50,51). Indeed, oxaliplatin treat-
ment led to autophagic activation in both HCC cells and 
xenografts (52). Inhibition of autophagy under these 
conditions increases the cytotoxicity of oxaliplatin, sug-
gesting that autophagy may be an important player in the 
resistance in HCC to oxaliplatin toxicity (51,52). In anoth-
er study, cisplatin and 5-FU were shown to induce the 
formation of autophagosomes in three different HCC cell 
lines, and attenuation of autophagy enhanced the cispla-
tin and 5-FU-induced cell death under both in vitro and 
in vivo conditions (53). The role of autophagy in chemo-
resistance of HCC to epirubicin has also been investigat-
ed. Combination of progesterone was found to overcome 
autophagy-related chemoresistance and allowed effec-
tive cancer cell elimination (54). Moreover, Yongxi et al. 
(55) showed that pemetrexed-induced autophagy in 
HepG2 HCC cell line blocked apoptosis activated by ERK 
inhibition. On the other hand, another chemotherapeu-
tic agent, adriamycin, was found to induce mitochondrial 
depolarization and autophagy, and its combination with 
curcumin to block autophagy further decreased the level 
of proliferation in comparison with adriamycin alone (56).

Targeted small molecules
Sorafenib is an FDA-approved tyrosine kinase inhibitor 
(TKI) used in the treatment of HCC (57). The drug increased 
overall survival even in patients with advanced disease 
(57,58). Sorafenib induces both apoptosis and autopha-
gy in HCC cells. Moreover, studies revealed that ER stress 
may be involved in sorafenib cytotoxicity (59). Modulation 
of proteasomal degradation also influenced sorafenib ef-
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fects on cell fate. Combination with proteasome inhibi-
tors significantly increased HCC cell death compared with 
sorafenib alone (60). Inhibition of mTOR and accumulation 
of autophagosomes were reported upon sorafenib treat-
ment of HCC cells (61). Concomitantly, combination of 
sorafenib and chloroquine (CQ, a drug that prevents auto-
phagosome maturation) had synergistic effects on tumor 
growth suppression (61,62). In line with this, sorafenib has 
been found to kill more cells when autophagy is attenuat-
ed using CQ or following genetic suppression by a specif-
ic siRNA (small interfering RNA) against Beclin 1 or ATG5 
(63). In another study, panobinostat, a pan HDAC inhibitor, 
was found to enhance the effect of sorafenib by blocking 
autophagy (64). Moreover, a derivative of sorafenib, SC-
59, that has a more potent effect on cancer cell viability 
than sorafenib, was shown to downregulate p-Stat3 levels 
and induce strong autophagy activation in HCC cell lines 
(65). Besides sorafenib, another TKI, nilotinib, stimulated 
autophagy in HCC cells through AMPK phosphorylation 
and regulation of PP2A (66). Combination with another 
agent, FTY720 (a potent sphingosine-1-phosphate recep-
tor agonist), enhanced sorafenib-induced cytotoxicity in 
HCC cells (67).

Other targeted drugs also have autophagy-activating ef-
fects. For example, targeting vascular endothelial growth 
factor (VEGF) by bevacizumab triggered autophagy. 
Moreover, combinatory inhibition of autophagy together 
with bevacizumab elevated apoptosis levels in HCC cells 
(68). Another inhibitor of VEGF, linifanib, also induced 
autophagy in HCC cells, and similarly, its cytotoxic ef-
fects were further enhanced on autophagy suppression 
(69). Ni et al. provided evidence that resistance to the 
bcl-2 inhibitor ABT-737 is a result of the activation of a 
ROS-JNK-autophagy pathway in HCC cells (70). More-
over, salinomycin-mediated suppression of autophagy in 
HCC cells has been reported to result in their cell death 
through defective mitochondria accumulation and ROS 
accumulation (71). In another study, inhibition of Hsp90 
by 17-AAG was shown to sensitize HCC cells against gos-
sypol induced apoptosis through suppression of cytopro-
tective autophagy (72).

In contrast with these findings, a study by Tai et al. showed 
that sorafenib enhanced autophagy-dependent cell death 
in HCC both in vitro and in vivo (65). In line with this, SC-
2001, an analog of the bcl-2 inhibitor obatoclax, induced 
autophagic cell death in HCC cells (73). It is possible that 
autophagy levels in these set-ups were more robust than 
those in other cited studies, converting chemoprotective 
autophagy to a cell death-inducing pathway.

Natural products
A number of natural products have been shown to have 
autophagy-related effects on the growth and survival of 
HCC cells. For example, baicalin is a natural flavonoid ob-
tained from the Chinese herb Scutellaria baicalensis, and 
it exerts an apoptosis and autophagy-dependent inhibi-
tory effect on HCC (74). Alpinia officinarum-derived Ga-
langin is another natural flavonoid that induces autopha-
gy in HCC cells through the activation of TGFb receptor/
Smad axis (75). Various cannabinoid derivatives showed 
antitumor effects against HCC that depend on intact au-
tophagic activity. Blockage of autophagy attenuates an-
titumor effects, thus supporting the idea that autophagic 
cell death is active under these circumstances (76). Sim-
ilarly, berberine, allicin, matrine, and glycyrrhetinic acid 
are plant-derived molecules that show their antitumor 
effects through induction of either apoptosis and/or au-
tophagy in HCC cells (77-80). In another study, admin-
istration of soybean fermentation products containing 
live bacteria (SCB) was shown to suppress HBV-related 
HCC tumor growth; under these conditions, SCB induced 
both apoptosis and autophagy (81). On the other hand, 
steroidal saponin 20(S)-Ginsenoside Rg3 has been shown 
to block autophagy and promotes doxorubicin sensitivity 
in HCC cells and tumors (82).

In addition to plant-derived natural products, venoms 
are another group of natural products that have been 
evaluated for cancer treatment. Arenobufagin, a venom 
isolated from toads, shows significant antineoplastic ef-
ficacy against both naive HepG2 cells and their multidrug 
resistant clones. Inhibition of autophagy is reported to 
enhance the level of apoptosis in this context (83). An-
other toad venom, bufalin, also has an antitumor activity 
on HCC cells, and its efficacy has been found to increase 
under autophagy-attenuated conditions (84).

Noncoding RNAs
MicroRNAs are associated with various cellular phenom-
ena including cell death, differentiation, and diseases. 
Dysregulation of miRNAs is linked to cellular abnormal-
ities and carcinogenesis, and changes in microRNA lev-
els affect tumor growth and progression. As explained in 
detail above, autophagy abnormalities are also associated 
with cancer. Therefore, changes in the levels of a subset 
of miRNAs that control the autophagic activity may have 
important outcomes on cancer cell survival and drug re-
sponses (85). For example, levels of drug resistance-as-
sociated miR-199a-5p were found to be significantly 
decreased in patients with HCC following treatment 
with cisplatin. In fact, miR-199a-5p has been shown to 



be responsible from the attenuation of cisplatin-induced 
autophagy in HCC cell lines through ATG7 targeting. In-
hibition of autophagy in HCC cells blocked miR-199a-5p 
downregulation-induced cell proliferation and cisplatin 
resistance (86). Another ATG7 targeting miRNA, miR-
375, has been found to be downregulated in HCCs and 
decreases HCC cell viability under hypoxic conditions 
(87,88). Another miRNA, miR-224, is one of the most 
studied miRNAs in HCC, and it has been shown to target 
Smad4. Strikingly, high miR-224 levels were associated 
with lower Atg5 levels as well as lower Smad4 levels, and 
these findings significantly correlated with HBV infection 
and poor overall survival in patients with HCC (89). Inter-
estingly under these conditions, autophagy was shown 
to limit miR-224 levels through the direct degradation 
of the miRNA, hence resulting in liver tumor suppression 
(89). MiR-101 has been characterized as an autopha-
gy-inhibitory miRNA, and this effect has been shown to 
sensitize HCC cells against cisplatin, doxorubicin, and 
5-FU (90,91). MiRNAs were also involved in sorafenib 
resistance in HCC. For instance, Mir-21 is found to sup-
press autophagy via PTEN/Akt axis and lead to sorafenib 
resistance (92). Sorafenib-induced miRNAs were also 
used for determining prognosis and follow-up. In a study, 
miR-423-5p was described as a positive regulator of au-
tophagy in HCC cells. Levels of this miRNA in patient sera 
months after sorafenib treatment indicated a response 
to treatment, indicating the prognostic value of an auto-
phagy-related miRNA in HCC (93).

Long noncoding RNAs (lncRNAs) have been associated 
with HCC as well. For example, PTENP1 is identified in a 
screen of lncRNAs targeting PTEN. In fact, PTENP1 act-
ed as a competitor of several autophagy-regulating miR-
NAs, such as miR-17, miR-19b, and miR-20a, which tar-
get PTEN and PHLPP as well as autophagy genes ULK1, 
ATG7, and p62. Injection of a PTENP1-expressing virus to 
mice has been shown to stimulate autophagy and atten-
uated HCC tumor growth (94).

Other approaches
Recent studies indicate that autophagy regulator mTOR 
signaling is upregulated in a significant proportion of 
HCCs (95). Thus, mTOR pathway may be exploited as a 
drug target in HCC. For instance, RAD001 and BEZ235 
are characterized as PI3K/mTOR-inhibitor drugs. Combi-
nation of these two drugs has been shown to suppress 
HCC growth both in vitro cell culture and in vivo in mice 
experiments (96). Moreover, orally available BEZ235 in a 
combination with autophagy blockage is also more ef-
fective in HCC treatment (97). Another molecule, the 

Akt inhibitor MK-2206, has been found to trigger cell 
death, and suppression of autophagy under these exper-
imental conditions has been shown to further enhance 
the efficacy of the inhibitor in HCC cells (98). Another 
Akt inhibitor called GD0068 has shown synergistic ef-
fects with sorafenib and even suppresses the growth of 
sorafenib-resistant HCC cells converting cytoprotective 
autophagy to autophagic cell death (99).

Some studies on nonsteroidal anti-inflammatory drugs 
(NSAIDs) revealed that inhibition of COX-2, which may be 
highly expressed in some tumor types, is the underlying 
mechanism for the cancer-preventive effects attributed 
to these drugs (100). One of the derivatives of the NSAID 
celecoxib, OSU-03012, has been found to exert antitu-
mor activities. Gao et al. revealed that autophagy levels 
were elevated in HCC cells upon OSU-03012 treatment. 
Blockage of autophagy decreased OSU-03012-induced 
cell death under both in vitro and in vivo conditions indi-
cating that autophagic cell death is important in the ef-
fects of the drug in HCC cells (101). Yet in another study, 
suppression of autophagy by 3-MA was found to promote 
NSAID meloxicam-induced apoptosis in HCC (102,103).

Histone acetylation has been linked to cancer through 
aberrant regulation of cancer-related genes. Interest-
ingly, HDAC1 has been reported to be overexpressed 
in HCC; yet, HDAC6 has been found to be decreased in 
HCCs compared with adjacent control tissues, and this 
observation is associated with poor prognosis (104). 
Nevertheless, HDAC inhibitors are tested as promising 
drugs against cancer, and several members of this group 
of drugs were also found to induce autophagy and even 
autophagic cell death in some contexts. SAHA, an im-
portant HDAC inhibitor, has been shown to induce au-
tophagic cell death in HCC cells (105). In another study, 
HDAC1 inactivation inhibited proliferation of tumor cells 
and activate caspase-independent autophagic cell death 
(106). On the other hand, HDAC inhibitors OSU-HDAC42 
and SAHA were both found to induce autophagy in HCC 
cells. Moreover, inhibition of autophagy decreases SA-
HA-induced cell death indicative of autophagic cell death 
activation in HCC (105).

In another study, irradiation was shown to kill HCC cells, 
which was further enhanced by the combination of oxal-
iplatin. In addition to this, when apoptosis was attenuated 
by a PARP inhibitor combination treatment, autophagic 
activation was observed and cell death responses were 
more robust (107). In a follow-up study, the same group 
showed that when HCC cells were treated with high LET 
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irradiation, cells died in an autophagy-dependent man-
ner under both in vitro and in vivo conditions (108). In an 
additional study, mTOR-inhibitor RAD001 was found to 
enhance high LET radiation-induced cytotoxicity in HCC 
cells (109). Altogether, high LET radiation-drug combina-
tions have therapeutic effects against HCC, and autoph-
agy appears to take part in the mechanism of action of 
these combinations.

Argininosuccinate synthetase (ASS) has been reported to 
be low in HCC cells. Thus, at least some HCC tumors may 
be auxotrophic for arginine and require arginine supply 
from extracellular sources (110). Consequently, autophagy 
and cell death were activated in HCC cells when they were 
exposed to a modified form of the arginine-degrading en-
zyme arginine deaminase (ADI-PEG20) (111). Moreover, an 
arginine-modifying enzyme, the enzyme peptidylarginine 
deiminase IV, has been reported to be related to chemo-
resistance in HCC through regulation of autophagy (112).

CONCLUSION
The above-cited studies underline the importance of au-
tophagy for health and disease in the liver. In particular, 
with the advance of studies on autophagy cancer, the 
role of autophagy in HCC development and management 
becomes clearer. Especially, studies on the contribution 
of autophagy and related mechanisms to HCC chemore-
sistance are of special interest. There are several studies 
correlating autophagic activity with resistance to che-
motherapeutic agents, including sorafenib. Several inde-
pendent labs are currently working on finding novel small 
molecules that will be capable of manipulating autophagy 
for treatment purposes. Further studies, including clini-
cal studies, are required to fully reveal the potential of 
the abovementioned strategies and these potential new 
drugs, alone or in combination with classical drugs, for the 
treatment of liver diseases and HCC.

Moreover, a strong connection between autophagy and 
liver pathologies, including nonalcoholic steatohepatitis, 
HBV, and hepatitis C virus infection and cirrhosis, has 
been reported (113). For instance, autophagy constitutes 
a major clearance of mechanism for intracellular patho-
gens, such as viruses. However, some viruses, including 
HBV and HCC, may hijack autophagic membranes during 
their replication (114). In addition, several autophagy de-
ficient animal models have been shown to suffer from 
hepatic steatosis, and independent studies have consis-
tently demonstrated that autophagy is involved in lip-
id and glycogen metabolism. Evidently, these and other 
abnormalities of liver function and pathologies are also 

closely related to HCC development. Thus, a better un-
derstanding of mechanisms underlying autophagy, its 
abnormalities, and its connection with liver diseases and 
disease-causing factors will certainly improve current di-
agnosis, treatment, follow-up, and prevention strategies 
for HCC. Autophagy constitutes one of the important 
medical fields that already started to provide examples of 
bench-to-bedside transitions. Hence, following this nov-
el but fast-growing field will be most rewarding for both 
basic scientists and clinical researchers and practitioners.
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