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Abstract
Liver fibrosis is a wound-healing response generated against an insult to the liver that causes liver injury. It has the potential to progress 
into cirrhosis, and if not prevented, it may lead to liver cancer and liver failure. The activation of hepatic stellate cells (HSCs) is the central 
event underlying liver fibrosis. In addition to HSCs, numerous studies have supported the potential contribution of bone marrow-derived 
cells and myofibroblasts to liver fibrosis. The liver is a heterogeneous organ; thus, molecular and cellular events that underlie liver fibro-
genesis are complex. This review aims to focus on major events that occur during liver fibrogenesis. In addition, important antifibrotic 
therapeutic approaches and experimental liver fibrosis models will be discussed.
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INTRODUCTION
Liver fibrosis is a response generated as a result of chron-
ic liver injury due to various factors, such as alcohol con-
sumption, non-alcoholic steatohepatitis (NASH), viral 
hepatitis [hepatitis B (HBV) and hepatitis C], autoimmune 
hepatitis, non-alcoholic fatty liver disease (NAFLD), and 
cholestatic liver diseases. The common effect of all of 
these factors on the liver is the generation of a chronic 
inflammation resulting in an abnormal wound healing re-
sponse. Different cell types and mediators participate to 
encapsulate injury. The generation of a fibrotic response 
in the liver gives rise to the accumulation of extracellular 
matrix (ECM) components, leading to fibrous scar forma-
tion (1,2). The architecture of the liver is disrupted by the 
presence of a fibrous scar, which causes hepatocyte loss 
and the deregulation of the normal functioning of the 
liver, ultimately resulting in liver failure (3). Liver fibrosis 
is a reversible process, unless it is progressive and leads 
to cirrhosis. The removal of the fibrotic response-causing 
agent aids in the regression of fibrosis as long as the liver 
is not at the stage of advanced cirrhosis (4,5).

Pathogenesis of liver fibrosis
Liver fibrosis is a serious health problem. If not treated, 
it may lead to advanced liver cirrhosis and hepatocellular 
carcinoma (HCC). Fibrogenesis is initiated by myofibro-
blast activation and proliferation because activated myo-
fibroblasts are the major source of ECM in the injured liv-
er (2,3). Although activated hepatic stellate cells (aHSCs) 
are the major source of myofibroblasts in the fibrotic liver, 

they are not the only precursors. Endogenous portal fi-
broblasts, fibrocytes, bone marrow-derived cells, and liver 
parenchymal cell-derived myofibroblasts that undergo 
epithelial-mesenchymal transition (EMT) give rise to a 
significant percent of myofibroblasts in the fibrotic liver. 
Different cell types activate myofibroblasts depending on 
the etiology of liver fibrosis (6). A previous study demon-
strated that aHSCs are the source of myofibroblasts in a 
carbon tetrachloride (CCl4)-induced liver fibrosis model, 
whereas portal fibroblasts give rise to myofibroblasts in 
the cholestatic liver (6). Bone marrow-derived cells rep-
resent a substantial fraction of the total fibrogenic popu-
lation in a more chronic injury.

In the quiescent state, HSCs are known as quiescent 
HSCs (qHSCs), and they are responsible for the storage 
of vitamin A in the liver. As a result of liver injury, qHSCs 
are activated by inflammatory mediators, which in turn 
differentiate into myofibroblasts (7). In this way, tissue 
remodeling is initiated in the liver by the secretion of 
ECM proteins and matrix metalloproteinases (MMPs) by 
aHSCs (8,9). 

Cellular and physiological events in liver fibrosis

Mechanisms of liver fibrosis
Different factors, including toxins, hepatitis, steatohepa-
titis, and autoimmune disorders, promote the activation 
of HSCs, which in turn acquire a myofibroblast-like phe-
notype (2). HSC activation comprises two major phases, 
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namely, initiation and perpetuation, and these processes 
are followed by a final resolution phase in case the inju-
ry cause still exists (10). Soon after the injury, the initi-
ation phase commences to generate a response against 
the factors that cause injury at the gene expression level, 
resulting in phenotypic changes. Early activation is driv-
en by the initial paracrine stimulation and presence of 
damaged hepatocyte products, causing priming of the 
cells for activation. Continuous stimuli for activation re-
sult in perpetuation that is mainly based on the activity 
of primed cells for activation. Cell behavior, such as pro-
liferation, fibrogenesis, contractility, matrix degradation, 
chemotaxis, retinoid loss, and cytokine release, changes 
as a result of this continuous activation. Overall, these 
changes contribute to the accumulation of ECM. HSCs 
undergo apoptosis, senescence, or become quiescent in 
the case of fibrosis resolution (11). Several studies have 
shown that different pathways and numerous cell-cell 
interactions control fibrogenesis and fibrosis regression 
(Table 1). 

Among the mechanisms of liver fibrogenesis, growth 
factor signaling has a significant role in the activation 
of HSCs, mainly through platelet-derived growth fac-
tor (PDGF) signaling. Cellular proliferation is initiated 
when PDGF recognizes its receptors that promote the 
dimerization of receptor subunits and autophosphoryla-
tion. This process initiates Ras-mitogen-activated protein 
kinase pathway activation, increases intracellular calcium, 
and results in protein kinase C activation (12,13). The par-
amount importance of PDGF signaling has been shown 
after blocking with PDGF receptor inhibitors, which may 
be a promising potential target for drug development. In 
animal models, this approach has been shown to result in 
antifibrotic activity during fibrosis (14). HSC proliferation 
is also stimulated by growth factors, such as transforming 
growth factor (TGF)-α and epidermal growth factor (15-
16). Hepatic angiogenesis is initiated by the recognition 

of vascular endothelial growth factor (VEGF) by its recep-
tors. Overall, these growth factors promote the remodel-
ing of ECM, resulting in collagen formation (17).

In the normal liver, collagens IV and VI are present in the 
space of Disse. However, during fibrogenesis, they are re-
placed by collagens I and II and fibronectin (18). Normally, 
TGF-β1 is found inactive, but following activation, it initi-
ates a signaling pathway through Smad proteins, result-
ing in collagen production. Moreover, TGF-β1 promotes 
the transdifferentiation of quiescent HSCs into myofi-
broblasts that secrete ECM (19). In addition, leptin sig-
naling also contributes to fibrogenesis through TGF-β1. 
Kupffer cells have been shown to release TGF-β1 follow-
ing liver injury, which is a downstream event of leptin sig-
naling initiation (20). 

HSCs are capable of expressing different chemokine re-
ceptors; such as CXC chemokine receptor (CXCR) 3; C-C 
chemokine receptor (CCR) 5; CCR7; and ligands, including 
chemokine ligand (CCL) 2, CCL3, CCL5, CXC chemokine 
ligand (CXCL) 1, CXCL8, CXCL9, and CXCL10. Chemok-
ines are a class of small chemotactic molecules that reg-
ulate inflammation. Even though the role of each specific 
chemokine in liver fibrogenesis is still being studied, the 
migration ability of fibrogenic cells to the injury site is 
known to be promoted by chemokines, thus increasing 
the number of cells and inflammation at the site of in-
jury. Both profibrogenic and antifibrogenic effects occur 
on interaction between chemokine receptors and ligands. 
CCR5, CCR1, and CXCL4 cause fibrosis, whereas the in-
teraction of CXCL9 and CXCR3 protects against fibrosis 
(21-23).

Adipokines are another major player during liver fibro-
genesis (24). They are secreted from adipose tissue. One 
of them, leptin, is a well-known circulating adipogenic 
hormone that has the ability to promote fibrogenesis. 

Pathway	 Effectors

Growth factor signaling	 PDGF, TGF-α, EGF, VEGF

Fibrogenic signaling pathway	 TGF-β1

Chemokine pathways	 CCR5, CCR1, CXCL4, CXCL9, CXCR3

Adipokine pathways	 Leptin, adiponectin

Neuroendocrine pathways	 Cannabinoid and opioid signaling, thyroid hormones, serotonin
CCR: C-C chemokine receptor; CXCL: CXC chemokine ligand; CXCR: CXC chemokine receptor; EGF: epidermal growth factor; PDGF: platelet-derived 
growth factor; TGF: transforming growth factor; VEGF: vascular endothelial growth factor

Table 1. Major signaling pathways and effectors in liver fibrosis
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Circulating leptin in the blood is proportional to the ad-
ipose mass in the body, and increased levels of leptin in 
the body are associated with fibrogenesis (25,26). In con-
trast, adiponectin as a counter-regulatory hormone has 
been suggested to have antifibrogenic activity, which is 
partially confirmed with the finding that adiponectin ex-
pression decreases during hepatic fibrogenesis (27). 

Neurochemical and neurotrophic factors also have ef-
fects on HSCs and thus during liver fibrosis. Liver injury 
induces the up-regulation of the neuroendocrine system, 
and activated HSCs start to express receptors that reg-
ulate cannabinoid (CB) signaling (28). CB1 signaling has 
been known to promote hepatic fibrogenesis, whereas 
CB2 signaling has an antifibrotic effect (29). Moreover, 
other neurotrophic factors also contribute to fibrosis, 
such as opioid signaling that promotes HSC proliferation 
and collagen production (30). Additionally, thyroid hor-
mones are known to increase HSC activation, whereas 
serotonin is pro-fibrotic (31,32). 

Inflammatory pathways play a significant role in liver fi-
brogenesis. There is a positive feedback loop between 
inflammatory and fibrogenic cells, which in turn results 
in amplified fibrosis. The activation of HSCs is promot-
ed with many other cell types, such as natural killer (NK) 
cells, T cells, Kupffer cells, macrophages, dendritic cells, 
and endothelial cells (23). Bacterial lipopolysaccharide is 
a well-known fibrosis-promoting agent by the activation 
of Toll-like receptor (TLR) 4 signaling, which is expressed 
on macrophages and HSCs (33,34). In contrast, Kupffer 
cell activity increases the activity of nuclear factor-kap-
pa β, which in turn promotes pro-inflammatory cytokine 
secretion (35). 

Oxidative stress and apoptotic cells are capable of induc-
ing an immune response (36,37). Liver injury results in 
the apoptosis of cells, which are phagocytosed by HSCs, 
resulting in increased nicotinamide adenine dinucleotide 
phosphate oxidase and cell survival (38,39). In contrast, 
apoptotic hepatocyte DNA was demonstrated to interact 
with TLR9 on HSCs, resulting in the activation of TRL9, 
thus increasing collagen production and HSC migra-
tion (40). Finally, activated HSCs are killed by NK cells, 
demonstrating an antifibrotic effect by inducing HSC 
apoptosis (41). 

Hepatic fibrosis is based on the wound-healing response, 
wherein angiogenesis has a significant role in liver regen-

eration. Because angiogenesis is known to promote liver 
carcinogenesis, the balance among angiogenic factors 
should be finely regulated (42). HSCs are located in the 
perisinusoidal space and regulate intrahepatic blood flow 
with the aid of their contractile abilities (43). Progressive 
liver injury results in the formation of vascular disorga-
nization in certain areas, resulting in hypoxia, initiating 
angiogenesis. A hypoxic environment induces VEGF and 
PDGF cytokine activities that promote both fibrogenic 
and angiogenic responses (42). Activated HSCs by hy-
poxia initiate interactions with PDGF and VEGF signaling, 
which play an important role in angiogenesis (23).

Reversibility of liver fibrosis
The reversibility of liver fibrosis was a controversial issue 
for a long time because some of the earlier studies ar-
gued that liver fibrosis is irreversible. However, more re-
cent studies have supported the idea that it is a reversible 
process if the injury-causing stimulus is withdrawn and 
demonstrated this argument in both experimental liver 
fibrosis models and clinical samples of a cirrhotic human 
liver (44-46). With the withdrawal of the causative agent, 
a cascade of events occurs to initiate the reversion of the 
fibrotic response. A decrease in cytokine levels, the loss 
of fibrous scars and myofibroblasts through senescence 
and apoptosis, and an increase in the collagenase activity 
are the initial events that occur during the reversion of 
liver fibrosis (47,48).

Moreover, the loss of myofibroblasts results in a decrease 
in tissue inhibitors of metalloproteinase (TIMP) levels and 
an increase in MMP activity, thus degrading ECM (49). 
MMPs are calcium-dependent enzymes that specifically 
degrade collagens and non-collagenous ECM substrates 
(50). Stellate cells secrete basement membrane proteases, 
MMP-2, MMP-9, and stromelysin (MMP-3), and interstitial 
collagenase, MMP-13 (50). The inactivation of proteases 
by binding to TIMPs is also emerging as an important locus 
of control because the sustained production of these pro-
teins during liver injury could inhibit the activity of inter-
stitial collagenases, leading to reduced degradation of the 
accumulating matrix (50). In addition, TIMP-1 is anti-apop-
totic for stellate cells, which may result in an increased 
number of activated stellate cells (50).

The loss of myofibroblasts is not the only component of 
liver fibrosis regression. Macrophages that have a signifi-
cant role in the progression and resolution of liver fibrosis 
by producing cytokines and chemokines to induce HSC 
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transition into ECM-myofibroblasts are also crucial for 
liver fibrosis regression (51,52). During the progression of 
liver fibrosis, macrophages augment fibrogenesis, where-
as during resolution through the increased production of 
MMP-13, matrix degradation is increased (52).

Senescence in liver fibrosis
HSCs are observed at the senescence state in the cir-
rhotic liver, a state in which they stay non-proliferative, 
lack a collagen-producing capacity, and produce more 
inflammatory cytokines (53). A previous study demon-
strated that p53 has a role in the restriction of liver fi-
brosis development through its association with cellular 
senescence via p21 induction (54). Moreover, in anoth-
er study, the expression of p53 in the senescent HSCs 
was shown to have an association with the inhibition of 
HCC development (55). In contrast, another study has 
claimed that the senescence-associated secretory phe-
notype in HSCs induces the development of obesity-as-
sociated HCC (56). Thus, the role of HSC senescence 
in liver fibrosis remains controversial and needs more 
findings.

Autophagy in liver fibrosis
Autophagy is a cellular event that occurs to maintain cel-
lular homeostasis by degrading damaged organelles and 
protein aggregates, which is also observed in HSC acti-
vation, and the inhibition of autophagy has been demon-
strated to suppress HSC proliferation and activation (57). 
In contrast, other studies have shown that the induction 
of autophagy in hepatocytes aids in the treatment of 
some other liver diseases, such as α1 anti-trypsin defi-
ciency, NASH, and alcoholic liver disease (58).

Angiogenesis and liver fibrosis
Angiogenesis is the formation of new blood vessels, which 
is induced by hypoxia in several organs. In addition to its 
contribution to tumor growth progression, angiogene-
sis is crucial for the growth and repair of injured tissues. 
Moreover, angiogenesis has a role in the pathogenesis of 
several inflammatory diseases (59-61). Although angio-
genesis occurs in various organs in the body, it is a more 
complex process in the liver. Angiogenesis initiated by 
chronic liver injury is based on different factors; hypoxia 
caused by inflammation and fibrosis and wound healing 
initiated by increased cytokine and growth factor levels. 
Several studies claim that anti-angiogenic therapy with-
out blocking the wound-healing response is important 
for the prevention of liver fibrosis (62-64). 

EMT in liver fibrosis 
Initially, EMT was suggested to contribute to liver fibrosis 
by generating collagen-producing myofibroblasts. How-
ever, this finding has become another controversial issue 
in liver fibrosis owing to opposite findings regarding the 
role of EMT in this process (65). One of the reasons for 
the opposite findings on EMT and liver fibrosis is that lin-
eage tracing is an experimental technique that has pit-
falls, such as Cre-mediated recombination is not 100% 
efficient and the number of markers analyzed to detect 
the presence of EMT may not be adequate. Furthermore, 
similar to many other studies, experimental liver fibrosis 
models may not completely reflect the actual EMT that 
occurs during chronic human liver diseases. 

Experimental liver fibrosis models

In vivo models of liver fibrosis

Chemical-based models
Various chemical agents are used to induce liver fibrosis 
in animal models with different methods of administra-
tion. Intraperitoneal (i.p.) injection is the fastest way to 
trigger liver fibrosis. In contrast, oral administration or 
inhalation-based administration is also used, but it takes 
more time than i.p. injection. In any case, chemical-based 
liver fibrosis models are frequently used because they are 
easily replicable (66,67). 

Ethanol is one of the frequently used chemicals to 
study liver fibrosis because alcohol consumption is 
among the causes of chronic liver diseases worldwide. 
Ethanol administration induces the activation of HSCs, 
the apoptosis of hepatocytes, and inflammation (68). 
CCl4 is a well-known hepatotoxin that is popular in liv-
er fibrosis and cirrhosis studies in rodents. This model 
effectively mimics liver fibrosis induced by toxic dam-
age. Although the i.p. injection of CCl4 is widespread, it 
can also be administered subcutaneously, orally, or via 
inhalation. Thioacetamide is another chemical agent 
that is similar to CCl4 in the way that both need to be 
metabolically activated to be toxic. The outcome of 
thioacetamide administration has been found to be 
high oxidative damage associated with the activation of 
HSCs (69). Dimethylnitrosamine (DMN) and diethylni-
trosamine (DEN) are other chemicals that are carcino-
genic and frequently preferred to generate liver fibrosis 
models in animals. The biotransformation of DMN and 
DEN generates reactive oxygen species, which in turn 
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react with nucleic acids, lipids, and proteins, resulting in 
cellular malfunction and necrosis (70-73). 

Diet-based models
Even though it is possible to induce NAFLD progression to 
NASH using certain diets in experimental animals, these 
models do not completely mimic the human pathology 
(74). A model was found to mimic hepatic stress due to 
fatty acid transition from the adipose tissue to the liver 
and increased triglyceride production (75). A methionine- 
and choline-deficient (MCD) diet is preferred for NASH 
studies, but this model ignores obesity and insulin-resis-
tance problems (76). MCD diet problems are overcome by 
a high-fat (HF) diet because it induces insulin resistance 
and an increase in body weight. A HF diet model is very 
similar to human NASH but requires a very long time to 
develop in animals. An alternative high-cholesterol diet 
was proposed, but this also has the disadvantage of a lack 
of obesity and insulin resistance (77). A choline-deficient 
l-amino acid-defined diet is similar to the MCD diet, but 
in addition, it induces obesity and insulin resistance. In 
the long term, this model is important for NAFLD, NASH, 
and HCC studies because it promotes liver tumor forma-
tion associated with liver fibrosis (78). 

Surgery-based models
Bile duct ligation (BDL) is the most common sur-
gery-based model that induces biliary fibrosis and 
cholestatic injury, which is based on the double ligation 
of the bile duct (79). In this way, increased biliary pressure 
is generated together with inflammation and cytokine 
secretion, resulting in cholestasis and liver damage. The 
applicability and replicability of BDL are not high, and this 
model has been suggested for use in short-term liver fi-
brosis studies associated with cholestasis (80).

Genetically modified models
The use of genetically modified animals in liver fibrosis 
studies has both advantages and disadvantages. It allows 
researchers to investigate specific proteins and signaling 
pathways underlying liver fibrosis, but on the other hand, 
it is hard to develop liver fibrosis in these animals without 
a second stimulus (81-83). In multidrug resistance-asso-
ciated protein 2-deficient mice, a high level of hepato-
cyte necrosis and portal inflammation, a strong human 
cholangitis-like phenotype, and periductal fibrosis have 
been observed (84). Moreover, these mice were found 
to be capable of developing biliary fibrosis at 4-8 weeks 
and HCC at 4-6 months (84). Alms1Fat ausi mutant mice 

form another group of genetically modified animals for 
liver fibrosis studies because of the effect of both diet 
and genetics on liver fibrosis progression in these mice. 
They are ideal for studies investigating NAFLD progres-
sion to NASH (85).

Infection-based models
In humans, hepatitis virus induces liver fibrosis, but it 
is not the case in rodents. Thus, genetically engineered 
animals that are capable of expressing the HBV enve-
lope-coding region under the control of the albumin 
promoter are frequently used for hepatitis studies (86). 
The use of immunodeficient mice transfected with the 
HBV plasmid is an alternative for these animals (87). In 
addition to these viral infection-based models, different 
parasite infection-based models are used to study chron-
ic liver diseases (66). Overall, all of these infection-based 
models aim to increase the cytokine levels, resulting in 
the activation of HSCs and liver fibrosis.

In vitro models of Liver Fibrosis
Although in vivo models are more effective in reflecting 
the actual hepatic environment, in vitro models are also 
frequently used in liver studies. Primary HSCs isolated 
from the liver are good models for this, but a low viability 
of these cells after isolation is a common problem. More-
over, HSCs are activated just after they are embedded 
on a culture dish, which does not reflect the real mech-
anism underlying liver fibrogenesis. Obtaining pure HSCs 
is another problem for liver fibrosis studies because HSC 
cultures may be easily contaminated with other liver cell 
types. Cell lines are used as an alternative for primary cells, 
but like in many other studies, they do not completely re-
flect the in vivo scenario in the liver, even though they are 
easily available and unlimited (66). 

ANTIFIBROTIC THERAPIES
Thanks to continued experimental advances in the past 
years, new promising and exciting therapeutic approach-
es can be developed. One of the active research areas 
to develop new therapy is toward targeting fibrogenic 
events in the liver.

TGF-β1 is a well-known molecule that occurs in fibrot-
ic events in all organs. However, its systemic inhibition 
may increase overall inflammation. Thus, targeting cer-
tain steps in the activation of TGF-β1 may be helpful to 
decrease the fibrotic response in the liver. Integrins and 
connective tissue growth factor are good candidates for 
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targeting the TGF-β1 pathway because they play signif-
icant roles in TGF-β1 release and activation, respectively 
(88, 89). A study has demonstrated that cannabinoid re-
ceptor 1 (CB1) deactivation attenuates experimental liver 
fibrosis, but an antagonist of CB1 was shown to have side 
effects in another study. Reducing redox injury is another 
alternative for antifibrotic therapy, such as the use of an-
tioxidants. Unfortunately, owing to differences between 
animals and humans, testing the effect of antioxidants 
on liver fibrosis is more complex than predicted, and more 
clinical trials need to be conducted (90). 

Another possible area to develop new therapies is in the 
targeting of fibrosis reversal. In this context, targeting 
macrophage recruitment may be a useful approach in 
rodents because it is central in fibrogenesis and its re-
gression. However, because macrophage subpopulations 
in humans have not been clearly characterized yet, mac-
rophage-targeting studies would not be helpful, until hu-
man macrophage biology is completely understood (90). 

Liver fibrosis is a dynamic process; thus, targeting one 
pathway in this process may not be enough to induce 
its reversal. Combination therapies that target the cen-
tral components that underlie liver fibrosis are important, 
such as ECM and certain cell types that play roles in this 
process. Overall, combination approaches for antifibrot-
ic therapies are very encouraging. However, toxic and 
off-target effects of these combination therapies should 
not be ignored in future studies, like in many other thera-
peutic approaches for different diseases.
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