
INTRODUCTION

Programmed cell death is a basic biological pheno-
menon that occurs in all organs and tissues. Bet-
ween 1962-1964, it was in fact firstly discovered in
the liver in the course of studies on ischemic liver
injury (1). However, once identified in various ot-
her types and tissues, Kerr et al. (2) concluded
that programmed cell death subserves a general
homeostatic function and termed it apoptosis. To-
day, we know that in adults up to 1011 cells die
per day by apoptosis, stunningly amassing to one’s
body weight within one year (3).

As in all other sites, a certain degree of hepatocy-
te apoptosis is characteristic of a healthy liver. In-
deed, in recent years it has become obvious that
development and progression of various liver di-

seases are associated with inordinate increase or
decrease in hepatocyte apoptosis. Moreover, rat-
her than only as a late consequence of more essen-
tial pathogenic processes, it appears that dysregu-
lated programmed cell death itself may be a fun-
damental feature of most acute and chronic hu-
man liver diseases (3, 4). Still, the contribution of
cell death to liver diseases is a consequence of both
apoptosis and necrosis, or necroapoptosis (5).

Specifically, recent data suggest a direct link bet-
ween upregulated apoptosis, the subsequent re-
lease of inflammatory mediators, and the develop-
ment of fibrosis (6). Such an interrelationship has
been well documented both for ethanol-induced
hepatitis and non-alcoholic fatty liver disease
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Apoptozla iliflkili hücre ölümü genellikle düzenli ve s›n›rl› flekil-
de oluflur. Yaln›zca seçilmifl hedef hücreler oluflum, geliflim ve
ço¤alma sürecinde yok edilir. Bununla birlikte patofizyolojik
durumlarda, apoptoz k›sa bir dönem ya da bir kaç on y›l› kap-
sayacak kadar uzun sürebilen yayg›n, karmafl›k ve seçici olma-
yan durum olarak karfl›m›za ç›kabilir. Apoptoz muhtemelen
hasara cevap olarak geliflen bafllang›çtaki hücresel cevapt›r ve
doku hasar›, inflamasyon, fibrosis ve sirozla sonuçlanan birkaç
hücresel ve sitokin kaskad›n› bafllatabilir. Buna karfl›n yetersiz
apoptoz ve afl›r› hücre ço¤almas› kanserle iliflkilidir. Gerçekten-
de, tümör hücreleri s›kl›kla apoptozu regüle eden genlerde de¤i-
fliklikler gösterirler. Bu derleme apoptozisin baz› önemli kara-
ci¤er hastal›klar›ndaki rolüne odaklanm›flt›r. Son zamanlar-
da, bahsedilen karaci¤er hastal›klar› için yeni tedavi seçene¤i
olarak apoptotik hücre ölümünü art›ran ya da azaltan akla
yatk›n stratejiler gelifltirilmektedir.

Anahtar kelimeler: Apoptoz, non-alkolik ya¤l› karaci¤er hasta-
l›¤›, HBV, HCV, HCC, alkolik karaci¤er hastal›¤›

Cell death by apoptosis usually occurs in a regulated, limited
fashion. Only selected target cells are deleted in the process of
ontogeny, development and regeneration. In contrast, under
pathophysiological conditions, apoptosis imposes as a massive,
chaotic, non-selective event that may occur for periods or even
up to decades. It is likely that apoptosis is the initial cellular
response to injury and may thus initiate several, intertwined
cellular and cytokine cascades that culminate in tissue injury,
inflammation, fibrosis and finally, in cirrhosis. Obviously, this
cascade of events is of particular importance in various types of
acute and chronic liver diseases. In contrast, defective apoptosis
and increased cell proliferation is associated with cancer. Inde-
ed, tumor cells often show alterations in genes regulating the
apoptosis machinery. This overview is focused on the role of
apoptosis in select important liver diseases. Today, rational-ba-
sed strategies are being developed to either promote or suppress
apoptotic cell death as a novel therapeutic option in the treat-
ment of these liver diseases.

Key words: Apoptosis, non-alcoholic steatohepatitis, HBV,
HCV, hepatocellular carcinoma, alcoholic liver disease



(NAFLD), as well as cholestatic liver diseases, cer-
tain mutations of the α1-antitrypsin gene, Wilson’s
disease, viral hepatitis, and ischemia-reperfusion
injury (7). Subsequently, fibrosis initiated by sus-
tained excessive apoptosis may eventually culmi-
nate in cirrhosis and liver failure. As an example,
drug toxicity-related acute and massive hepatocel-
lular apoptosis leads to acute liver failure with the
consequence of emergency liver transplantation
(8-10). In contrast, the combination of insufficient
apoptosis with dysregulated proliferation may
promote the development of cancer (11) (Figure 1).
Dysregulated apoptosis is therefore associated
with considerable morbidity and mortality in
many liver diseases (3).     

Apoptosis in the Pathogenesis of Liver
Diseases

Apoptosis is a form of cell death characterized by
organized nuclear and cellular fragmentation. It
may occur via two fundamental pathways: (i) the
death receptor (DR)-mediated or extrinsic path-
way; or (ii) the intracellular organelle-based in-
trinsic pathways (12). During apoptosis, cells are
fragmented into small membrane-bound so-called
apoptotic bodies (AB), which are removed by pha-
gocytosis (13-15).

Regulation of apoptotic machinery in hepatocytes
is complex and is commonly triggered through ac-
tivation of DRs (16, 17) (Figure 2). The intracellu-
lar pathway can be initiated by several organelles,
for example, lysosomal permeabilization, patholo-
gic alterations in the cellular storage and mobili-
zation of calcium or in processes that are located
in the endoplasmic reticulum. Intracellular DNA
damage or mitochondrial dysfunction can all trig-
ger apoptosis (18). Intramitochondrial functions

often play a critical role in augmenting the apop-
totic process. As a prominent example, mitochon-
drial release of cytochrome c is a common event in
apoptosis and triggers a caspase-dependent casca-
de that culminates in programmed cell death (15). 

Once apoptosis was identified for its important ro-
le in fibrogenesis, the attention shifted to its po-
tentially modulating effects on fibrogenesis (19,
20). The increased activation and proliferation of
hepatic stellate cells (HSCs), combined with exces-
sive synthesis of collagen, are known phenomena
during liver fibrosis (21). Driving activated HSCs
into apoptosis is one way to resolve fibrosis (22). In
fact, in vitro and in vivo studies have shown that
inducing apoptosis of activated HSCs is essential
to the resolution of fibrosis (22-24). Indeed, activa-
ted HSCs express DRs such as Fas and DR5 (25,
26). In a study by Wright et al. (27), fibrotic rats
were treated with gliotoxin to induce apoptosis in
HSCs, which resulted in decreased collagen depo-
sition. Issa et al. (28) showed that mutation in col-
lagen 1 (col-1αIr/r) confers resistance to the action
of collagenase and results in the failure to recover
from liver fibrosis, the persistence of activated
HSCs and diminished hepatocyte generation. The-
refore, collagen 1 protects activated HSCs from
apoptosis. Apoptosis, therefore, not only induces
fibrosis but may also resolve fibrosis by inducing
the death of HSCs. In NAFLD conditions, an upre-
gulation of free fatty acids (FFAs) can lead to acti-
vation of HSCs. Indeed, we have recently shown in
an in vitro study that FFA-activated human LX-2
stellate cells are more activated by subsequent ad-
dition of resveratrol. This red wine component not
only amplified the expression of α-smooth muscle
actin (SMA), a strong marker of fibrogenesis, but
also the DR CD95/Fas and anti-apoptotic media-
tors like Bcl-2 and Mcl-1 (29). This finding raises
the possibility that in obese patients with elevated
FFAs, resveratrol could provoke hepatic fibrogene-
sis. 

Liver injury not only causes hepatocyte apoptosis
but also stimulates the production of pro-inflam-
matory chemokines. Hepatocyte apoptosis therefo-
re appears to be in some discrete way associated
with the generation of such chemokines (30-34).
Indeed, Fas-mediated hepatocyte apoptosis elicits
an inflammatory response in the liver that, secon-
darily, induces HSC activation (35, 36). Although
originally thought of as a “silent process”, uncoor-
dinated and continuous apoptosis in the liver li-
kely initiates sustained inflammation and, with ti-
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FFiigguurree  11.. Simple overview of selected liver diseases associated
with excessive apoptosis demonstrating the underlying pathome-
chanisms.



me, may act profibrogenic (6).

Liver fibrosis is a cardinal feature of chronic liver
injury. Ultimately, hepatic fibrosis leads to cirrho-
sis with clinical complications of portal hyperten-
sion, chronic liver failure and consequently liver
cancer. 

Apoptosis in Certain Liver Diseases

Death receptors, particularly Fas/CD95, are bro-
adly expressed by liver parenchyma cells and play
a crucial role in the apoptotic machinery. In evolu-
tionary terms, this may result from adaptive pro-
cesses that allow the more efficient elimination of
hepatocytes that have been infected, for example,
with hepatotropic viruses. However, the same effi-
cient clearance system may erroneously aggravate
pathologic processes in the liver, thus demanding
the conception of suitable therapeutic options.

A - Apoptosis in non-viral liver diseases

Apoptosis in non-alcoholic fatty liver disease
(NAFLD)

NAFLD is the most common liver disease in deve-
loped countries (37). Liver injuries in NAFLD
comprise a spectrum of steatosis, steatohepatitis,
advanced fibrosis, and cirrhosis (38). The spec-
trum of symptoms in an advanced sub-entity of
NAFLD, termed non-alcoholic steatohepatitis
(NASH), comprises steatosis, balloon degenerati-
on, inflammation and various degrees of fibrosis
(39). NASH is diagnosed if the NASH scoring sys-
tem (NAS) is ≥5 (40).

It is generally believed that simple steatosis is a
benign condition that only holds a minimal risk of
progression, whereas NASH may progress to cirr-
hosis (41). The best known risk (co-factor) for
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FFiigguurree  22.. Death receptors (DRs) involved in hepatocyte apoptosis. Schematic representation of DR-mediated signaling in hepatocytes
involving Fas/CD95, tumor necrosis factor-receptor I (TNF-RI) and the TNF-α-related apoptosis-inducing ligand receptors-1 and -2
(TRAIL-1 and -2). Receptor-ligand interaction results in receptor oligomerization and the recruitment of adaptor proteins, i. e. Fas-
associated protein with death domain (FADD) and TNF-RI-associated death domain protein (TRADD). Downstream, this interaction
leads to the activation of initiator caspases 8 and 10. The resulting so-called death-inducing signaling complex (DISC) can directly
activate effector caspases 3, 6 and 7 and/or pro-apoptotic proteins such as Bid. These processes activate the intrinsic pathway subse-
quently releasing cytochrome c, and finally leading to apoptosis.



NAFLD is the metabolic syndrome (including obe-
sity, hyperlipidemia, and diabetes mellitus) and
other metabolic diseases (42-44). However, altho-
ugh these conditions may be pivotal for developing
NAFLD, the concrete pathway to NASH remains
elusive. Nevertheless, more recent studies suggest
that the progression in both NAFLD and NASH
(where Fas and tumor necrosis factor receptor
type-I [TNF-RI] have also been found to be overex-
pressed) correlates with increased hepatocyte
apoptosis, thus possibly indicating its etiopathoge-
nic role (45, 46). Moreover, recent findings indica-
te a strong interaction between adipose tissue and
liver cells. Therefore, it is likely that the progres-
sion to NASH in NAFLD patients is hormonal, re-
gulated by the adipocytes (47). 

It has been shown that in high carbohydrate-fed
mice (thus evaluating one key risk factor for deve-
loping NAFLD), the Fas receptor is significantly
upregulated. Fas-induced hepatocyte apoptosis is
mediated by the caspase 8-dependent cleavage of
Bid, a pro-apoptotic member of the Bcl-2 family
that translocates to mitochondria and, in concert
with other pro-apoptotic proteins (e.g. Puma, No-
xa, Bim), induces the loss of mitochondrial integ-
rity (48). Successive release of cytochrome c then
activates the apoptosis machinery via caspases-3
and -7 (45, 49). Additionally, the well-documented
release of reactive oxygen species (ROS) upon mi-
tochondrial disruption further exacerbates liver
injury and inflammation (11, 50). The determina-
tion of M30, a neo-epitope that detects cytokeratin
18 fragments, strongly predicts apoptosis-depen-
dent processes in patient with NASH (51).

Apoptosis in ethanol-induced liver disease

The pathogenesis of ethanol-induced liver injury
is still unknown. However, recent experimental
data again support a crucial role of hepatocyte
apoptosis (50). In mice, chronic ethanol instillati-
on results in a significant time-dependent increa-
se in hepatocyte apoptosis. Similar to the situati-
on in humans, these changes are potentially rever-
sible after ethanol withdrawal (52). Interestingly,
while hepatocyte Fas levels in alcohol addicts we-
re as low as in non-alcoholics, their FasL mRNA
levels were found to be significantly increased. In
these patients, hepatocyte death may thus be in-
duced via paracrine or autocrine pathways (53).

Hepatocyte apoptosis directly correlates with di-
sease severity, bilirubin and alanine aspartate
(AST) levels and the degree of steatosis (54, 55).

Such hepatocytes often co-localize with infiltra-
ting neutrophils, which suggests a subsequent inf-
lammatory response to liver injury. Several mec-
hanisms have been proposed to explain induced
hepatocyte apoptosis. One prominent target is the
cytochrome P450 isoform, CYP2E1. The metaboli-
zation of ethanol, especially via CYP2E1, leads to
release of ROS and the generation of lipid peroxi-
dation products (11). ROS may cause mitochondri-
al dysfunction and affect the release of pro-apopto-
tic factors, such as cytochrome c, with the consequ-
ence of caspase activation (11, 50). In line with
this, antioxidants have been shown to reduce
apoptosis in ethanol-exposed rats (56, 57). ROS
may increase FasL mRNA expression in hepatocy-
tes and activate autocrine or paracrine mecha-
nisms of cell death. 

Another possible mechanism is the TNF-α path-
way, involving nuclear factor kappa B (NFκB) ac-
tivation, which can upregulate the expression of
Fas and FasL genes (58). Indeed, increased TNF-
α serum levels that contribute to liver injury have
been found in patients with ethanol-induced hepa-
titis (59). Moreover, the expression of the high-
and low-affinity TNF-α receptors (TNFα-RI and -
RII) is much increased in chronic ethanol abuse,
thus sensitizing for TNF-α-induced apoptosis. In-
deed, some studies have shown an improvement in
alcohol-induced hepatitis after anti-TNF-α treat-
ment (60, 61). However, in October 2002, a multi-
center randomized trial with the anti-TNF-α anti-
body infliximab in patients with severe alcoholic
hepatitis was stopped by the French drug agency.
The study aimed to determine the superiority of
infusions with infliximab (10 mg/kg) associated
with prednisolone (40 mg/day) compared with in-
fusions of placebo. The main end-point was the
two-month mortality rate. An analysis was perfor-
med after the inclusion of 36 patients. Unexpec-
tedly, there was a two-fold increase in death in the
infliximab versus the placebo group. The main
causes of death were due to infection, hemorrhage
and very often renal failure (62). However, becau-
se of the risk of severe adverse events - already
described in patients with Crohn’s disease - the re-
sults of the French multi-center trial should be
fully discussed before starting a new trial, inclu-
ding the choice of the infliximab dose. 

B - Apoptosis in viral liver disease

The hepatitis B and C viruses (HBV, HCV) are
two main causative agents for virus-induced liver
damage and cirrhosis. Persistent infection of he-
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patocytes for years may in general lead to liver inf-
lammation and, in the course of this process, hepa-
tocytes undergo a high rate of cell destruction and
regeneration that results in an increased risk of
developing hepatocellular carcinoma (HCC) (11).
Virus-induced liver injury is mainly a consequen-
ce of the host’s immune response to viral proteins
expressed by infected hepatocytes or of the direct
cytopathic effects of these viruses. 

Specifically, T-lymphocytes recognize and kill he-
patocytes expressing viral antigens to clear the vi-
rus from the liver, which is the first cause of liver
damage (63). In addition, signals released from
these immune cells promote liver inflammation
and chemotactically attract further inflammatory
cells such as neutrophils (64). Several studies ha-
ve shown that the elimination of virus-infected he-
patocytes by cytotoxic T-cells mainly occurs via
DRs, with Fas as the most prominent example (65,
66). Increased Fas and FasL expression has actu-
ally been detected in virus-infected patients and
correlates with severity and location of liver inf-
lammation. Fas expression can be induced by both
the expression of viral protein or inflammatory
cytokines (65, 66). Perhaps the two most impor-
tant cytokines to this effect are interleukin-1 (IL-
1), as generated early in the anti-viral response,
and TNF-α, which acts as a pleiotropic late stage
mediator (63, 67). 

Hepatitis B

It was demonstrated that the T cell-mediated per-
forin death pathway as well as the Fas/FasL sys-
tem play critical roles in liver cell damage in chro-
nic HBV infection (68). In any event, it has been
shown that selected HBV proteins interfere with
mitochondrial pathways (69); it may then indeed
depend upon flanking circumstances whether
such interaction rather stimulates or suppresses a
cell’s apoptotic machinery. 

Another example is the x protein of HBV (HBx).
As a potent transactivator, it is essential for viral
replication. In studies on transgenic mice, HBx
stimulated apoptosis of hepatocytes by sensitizing
them to death ligands such as TNF-α and TNF-α-
related apoptosis-inducing ligand receptors (TRA-
IL) (70). In contrast, HBx can also stimulate the
NFκB and JNK pathways that are known to block
Fas-mediated hepatocyte apoptosis (71). 

HBxAg also appears to promote fibrogenesis, by
stimulating the production of fibronectin. HBxAg
also stimulates the production and activity of

transforming growth factor (TGF)-β1 by several
mechanisms, thereby promoting the pro-fibrogenic
and tumorigenic properties of this important cyto-
kine. In addition, HBxAg appears to remodel the
extracellular matrix (ECM) by altering the expres-
sion of several matrix metalloproteinases (MMPs),
which may promote tumor metastasis. Hence,
HBxAg appears to promote chronic infection by
preventing immune-mediated apoptosis of infec-
ted hepatocytes, by promoting the establishment
and persistence of fibrosis and cirrhosis preceding
the development of HCC, and by promoting the re-
modeling of EMC during tumor progression (72).
These findings suggest the relative balance betwe-
en these processes to actually determine whether
pro- or anti-apoptotic stimuli may eventually pre-
vail. As a result, increased apoptosis may support
liver injury, while its inhibition may maintain
chronic infection and thus, indirectly promote car-
cinogenesis. The rate of hepatocellular apoptosis
in acute liver failure induced by HBV infection is
higher than in acetaminophen-induced liver failu-
re (unpublished data). 

Hepatitis C

Furthermore, it has recently been published that
caspase activation is considerably increased in
HCV-infected livers and correlates with the inf-
lammatory response and fibrosis-related processes
(73, 74). In line with these findings, HCV patients
reveal elevated serum levels of caspase-generated
cleavage fragments of cytokeratin 18 (M30) (73,
75). Therefore, besides supporting the understan-
ding that apoptosis promotes fibrosis, these aut-
hors identified a new, more sensitive biomarker
for detecting apoptosis-related liver injury. It may
now be employed diagnostically as well as a thera-
peutic read-out marker indicating the efficacy of
(co-)treatments with interferon-α or other thera-
peutic approaches (76).

As yet, it could not be clarified how selected viral
proteins influence the apoptotic process in the di-
seased liver. In fact, HCV proteins either support
or inhibit the apoptosis of hepatocytes, and it ap-
pears that the promotion of either of these alterna-
tives depends on the specific circumstances and/or
the classes of viral proteins involved. For example,
in a human hepatoma cell line, the HCV core pro-
tein increases susceptibility to DR-mediated apop-
tosis (77), while the core, E1, E2 and NS2 proteins,
when expressed in transgenic mice, inhibit the sa-
me process (78, 79). In addition, HCV can manipu-
late the immune system of the host, disrupting
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both innate and adaptive immunity to establish
persistent infection. The immune system initially
attempts to eradicate the virus, but in the setting
of chronic infection, probably promotes hepatocyte
damage and fibrosis through direct cellular toxi-
city and the release of inflammatory cytokines.
Multiple types of cytotoxic lymphocytes, compri-
sing the unique immune hepatic microenviron-
ment, are likely to be important in the pathogene-
sis of HCV-induced liver damage. The net liver da-
mage from HCV infection depends on the balance
between the host’s anti-viral mechanisms and the
virus’s ability to subvert them (80).

C - Apoptosis in hepatocellular carcinoma
(HCC)

In 90-95% of all primary liver tumors, HCC is the
most common malignancy arising from parench-
ymal cells (81). Various factors associated with its
pathogenesis include chronic viral hepatitis,
NASH, ethanol consumption, hereditary diseases
(α1 antitrypsin deficiency, hemochromatosis), and
exposure to hepatotoxins (aflatoxin) (82, 83).

In its progressive stage, HCC has been particu-
larly associated with both defective apoptosis and
increased cell proliferation. Tumor cells often
show alterations in genes regulating the apoptotic
machinery (84). Indirectly, these also include mu-
tations of the tumor suppressor gene p53 (85, 86).
Expressed in response to DNA damage, p53 may
induce a cell-cycle arrest allowing DNA repair.
However, in the face of extensive damage, p53 en-
gages pro-apoptotic BH3-only proteins and Bcl-2
homologues (Puma, Noxa, Bid and Bax) to elimi-
nate the affected cell by apoptosis. p53 can further
upregulate DRs (Fas, TRAIL-R1) and their li-
gands (FasL, TRAIL) (87). Dysfunctional p53 thus
allows damaged cells to escape their apoptotic cle-
arance and progress to cancerous proliferation
(88). Similar processes may result from the loss of
another putative tumor suppressor, TIP 30/CC3
(89), or from HCV infection (90). In both cases,
aberrant cells are no longer efficiently eliminated.
This leads to the development of different types of
cancer that include HCC (89) and cancer of the he-
patobiliary tract, or hilar cholangiocarcinoma, res-
pectively (90).

By causing DNA damage, chemotherapeutics of-
ten aim at inducing tumor cell apoptosis via p53
activation. However, resistance to such treatment
by p53-impaired tumors entails a bad prognosis.
Therefore, several clinical studies currently probe

a beneficial effect of exogenous p53. As for HCC,
the introduction of wild-type p53 by adenoviral
vectors already bears some promise for an impro-
ved therapeutic outcome (91, 92). 

Besides the known p53 effects on the apoptosis
machinery, alteration in the expression of DRs al-
so leads to defective apoptosis. Indeed, in HCC,
Fas is downregulated while its ligand is highly ex-
pressed, thereby allowing cancer cells to protect
themselves and to kill immune cells alike. Several
studies have shown that reduced Fas expression
in HCC negatively correlates with patient survival
(93, 94). It has also been found that the anti-apop-
totic protein Bcl-XL is overexpressed in HCC,
which confers resistance to mitochondria-media-
ted apoptosis. In HCC, Bcl-XL, therefore, also con-
tributes to Fas resistance. Since Fas-mediated
apoptosis in hepatocytes is linked to a mitochon-
drial pathway, it may be envisioned that certain
components of this pathway can therapeutically
be targeted by novel HCC-directed drugs (11). 

Meanwhile, promising approaches have been ma-
de towards treating hepato-malignancies with new
potent inducers of apoptosis. First, Jing et al. (94)
found that emodin induces apoptotic responses in
the HCC lines Mahlavu, PLC/PRF/5 and HepG2
(hepatoma cell line), thus effecting a time- and do-
se-dependent growth inhibition. Specifically, ROS
generated in response to emodin treatment caused
a reduction in the mitochondrial transmembrane
potential (ΔΨM) that was followed by the activati-
on of caspases 9 and 3 and led to DNA fragmenta-
tion and apoptosis. Second, in HepG2 cells, appli-
cation of the cyclooxygenase 2 inhibitor, NS398,
led both to a concentration-dependent inhibition of
cell proliferation as well as to the induction of
apoptosis. Mechanisms likely responsible for these
beneficial processes were a reduction of cells being
in the S-phase and an accumulation of quiescent
G0/G1 cells as well as a decrease in Bcl-2 expressi-
on (95). Finally, in human HCC-9204 cells trans-
fected with complete Bax cDNA, induced overex-
pression of Bax led to the induction of apoptosis
and moreover, sensitized HCC cells to adriamycin-
induced apoptosis (96). 

Recently, it has been shown that resveratrol, a red
wine integrant, acts as a potent sensitizer for an-
ti-cancer drug-induced apoptosis by inducing cell
cycle arrest (97, 98). Indeed, application of resve-
ratrol resulted in cell cycle arrest in the S phase
and apoptosis induction preferentially out of the S
phase upon subsequent drug treatment. Resverat-
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rol-mediated cell cycle arrest sensitized for apop-
tosis by downregulating survivin (IAP, inhibitor of
apoptosis proteins) expression through transcrip-
tional and post-transcriptional mechanisms (99).

Finally, recent evidence indicates that inflamma-
tory processes, as well as the epithelial-mesench-
ymal transitions that occur in HCC cells to facili-
tate their dissemination, are related to cell survi-
val (100). Therefore, therapeutic strategies to se-

lectively inhibit anti-apoptotic signals in liver tu-
mor cells have the potential to provide powerful
tools to treat HCC. Similar to the promising fin-
dings potentially enabling improved therapeutic
onsets for those liver diseases that coincide with
excess apoptosis, these and other ongoing studies
also let us anticipate much more promising treat-
ments for liver malignancies that perhaps may
even address further progressed stages of disease.
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